De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Principles and Methods for Data Science

Bag om Principles and Methods for Data Science

Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more. Provides the authority and expertise of leading contributors from an international board of authorsPresents the latest release in the Handbook of Statistics seriesUpdated release includes the latest information on Principles and Methods for Data Science

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9780444642110
  • Indbinding:
  • Hardback
  • Sideantal:
  • 496
  • Udgivet:
  • 27. maj 2020
  • Størrelse:
  • 152x229x0 mm.
  • Vægt:
  • 980 g.
  • 2-3 uger.
  • 11. december 2024
På lager

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Principles and Methods for Data Science

Principles and Methods for Data Science, Volume 43 in the Handbook of Statistics series, highlights new advances in the field, with this updated volume presenting interesting and timely topics, including Competing risks, aims and methods, Data analysis and mining of microbial community dynamics, Support Vector Machines, a robust prediction method with applications in bioinformatics, Bayesian Model Selection for Data with High Dimension, High dimensional statistical inference: theoretical development to data analytics, Big data challenges in genomics, Analysis of microarray gene expression data using information theory and stochastic algorithm, Hybrid Models, Markov Chain Monte Carlo Methods: Theory and Practice, and more.

Provides the authority and expertise of leading contributors from an international board of authorsPresents the latest release in the Handbook of Statistics seriesUpdated release includes the latest information on Principles and Methods for Data Science

Brugerbedømmelser af Principles and Methods for Data Science



Find lignende bøger
Bogen Principles and Methods for Data Science findes i følgende kategorier: