Machine Learning Applied to Composite Materials
- Indbinding:
- Paperback
- Sideantal:
- 204
- Udgivet:
- 1. december 2023
- Udgave:
- 23001
- Størrelse:
- 155x12x235 mm.
- Vægt:
- 318 g.
- 8-11 hverdage.
- 8. februar 2025
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Machine Learning Applied to Composite Materials
This book introduces the approach of Machine Learning (ML) based predictive models in the design of composite materials to achieve the required properties for certain applications. ML can learn from existing experimental data obtained from very limited number of experiments and subsequently can be trained to find solutions of the complex non-linear, multi-dimensional functional relationships without any prior assumptions about their nature. In this case the ML models can learn from existing experimental data obtained from (1) composite design based on various properties of the matrix material and fillers/reinforcements (2) material processing during fabrication (3) property relationships. Modelling of these relationships using ML methods significantly reduce the experimental work involved in designing new composites, and therefore offer a new avenue for material design and properties. The book caters to students, academics and researchers who are interested in the field of materialcomposite modelling and design.
Brugerbedømmelser af Machine Learning Applied to Composite Materials
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Machine Learning Applied to Composite Materials findes i følgende kategorier:
© 2025 Pling BØGER Registered company number: DK43351621