De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Machine Learning Applied to Composite Materials

Bag om Machine Learning Applied to Composite Materials

This book introduces the approach of Machine Learning (ML) based predictive models in the design of composite materials to achieve the required properties for certain applications. ML can learn from existing experimental data obtained from very limited number of experiments and subsequently can be trained to find solutions of the complex non-linear, multi-dimensional functional relationships without any prior assumptions about their nature. In this case the ML models can learn from existing experimental data obtained from (1) composite design based on various properties of the matrix material and fillers/reinforcements (2) material processing during fabrication (3) property relationships. Modelling of these relationships using ML methods significantly reduce the experimental work involved in designing new composites, and therefore offer a new avenue for material design and properties. The book caters to students, academics and researchers who are interested in the field of materialcomposite modelling and design.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9789811962776
  • Indbinding:
  • Hardback
  • Sideantal:
  • 204
  • Udgivet:
  • 30. november 2022
  • Udgave:
  • 22001
  • Størrelse:
  • 160x17x241 mm.
  • Vægt:
  • 477 g.
  • 8-11 hverdage.
  • 8. februar 2025
På lager

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Machine Learning Applied to Composite Materials

This book introduces the approach of Machine Learning (ML) based predictive models in the design of composite materials to achieve the required properties for certain applications. ML can learn from existing experimental data obtained from very limited number of experiments and subsequently can be trained to find solutions of the complex non-linear, multi-dimensional functional relationships without any prior assumptions about their nature. In this case the ML models can learn from existing experimental data obtained from (1) composite design based on various properties of the matrix material and fillers/reinforcements (2) material processing during fabrication (3) property relationships. Modelling of these relationships using ML methods significantly reduce the experimental work involved in designing new composites, and therefore offer a new avenue for material design and properties. The book caters to students, academics and researchers who are interested in the field of materialcomposite modelling and design.

Brugerbedømmelser af Machine Learning Applied to Composite Materials



Find lignende bøger
Bogen Machine Learning Applied to Composite Materials findes i følgende kategorier: