Wiener Chaos: Moments, Cumulants and Diagrams
indgår i Bocconi & Springer Series serien
- Indbinding:
- Hardback
- Sideantal:
- 292
- Udgivet:
- 28. december 2010
- Størrelse:
- 160x21x241 mm.
- Vægt:
- 606 g.
- 8-11 hverdage.
- 10. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Wiener Chaos: Moments, Cumulants and Diagrams
The concept of Wiener chaos generalizes to an infinite-dimensional setting the
properties of orthogonal polynomials associated with probability distributions
on the real line. It plays a crucial role in modern probability theory, with applications
ranging from Malliavin calculus to stochastic differential equations and from
probabilistic approximations to mathematical finance.
This book is concerned with combinatorial structures arising from the study
of chaotic random variables related to infinitely divisible random measures.
The combinatorial structures involved are those of partitions of finite sets,
over which Möbius functions and related inversion formulae are defined.
This combinatorial standpoint (which is originally due to Rota and Wallstrom)
provides an ideal framework for diagrams, which are graphical devices used
to compute moments and cumulants of random variables.
Several applications are described, in particular, recent limit theorems for chaotic random variables.
An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.
properties of orthogonal polynomials associated with probability distributions
on the real line. It plays a crucial role in modern probability theory, with applications
ranging from Malliavin calculus to stochastic differential equations and from
probabilistic approximations to mathematical finance.
This book is concerned with combinatorial structures arising from the study
of chaotic random variables related to infinitely divisible random measures.
The combinatorial structures involved are those of partitions of finite sets,
over which Möbius functions and related inversion formulae are defined.
This combinatorial standpoint (which is originally due to Rota and Wallstrom)
provides an ideal framework for diagrams, which are graphical devices used
to compute moments and cumulants of random variables.
Several applications are described, in particular, recent limit theorems for chaotic random variables.
An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.
Brugerbedømmelser af Wiener Chaos: Moments, Cumulants and Diagrams
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Wiener Chaos: Moments, Cumulants and Diagrams findes i følgende kategorier:
- Business og læring
- Matematik og naturvidenskab > Matematik > Diskret matematik
- Matematik og naturvidenskab > Matematik > Regning og matematisk analyse > Integralregning og integralligninger
- Matematik og naturvidenskab > Matematik > Sandsynlighedsregning og statistik
- Matematik og naturvidenskab > Matematik > Anvendt matematik > Stokastik
- Livsstil, hobby og fritid
© 2024 Pling BØGER Registered company number: DK43351621