Vortices in Bose-Einstein Condensates
- Indbinding:
- Hardback
- Sideantal:
- 203
- Udgivet:
- 6. juni 2006
- Udgave:
- 2006
- Størrelse:
- 161x19x236 mm.
- Vægt:
- 499 g.
- 8-11 hverdage.
- 7. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Vortices in Bose-Einstein Condensates
Since the first experimental achievement of Bose-Einstein condensates (BEC) in 1995 and the award of the Nobel Prize for Physics in 2001, the properties of these gaseous quantum fluids have been the focus of international interest in physics. This monograph is dedicated to the mathematical modelling of some specific experiments which display vortices and to a rigorous analysis of features emerging experimentally.
In contrast to a classical fluid, a quantum fluid such as a Bose-Einstein condensate can rotate only through the nucleation of quantized vortices beyond some critical velocity. There are two interesting regimes: one close to the critical velocity, where there is only one vortex that has a very special shape; and another one at high rotation values, for which a dense lattice is observed.
One of the key features related to superfluidity is the existence of these vortices. We address this issue mathematically and derive information on their shape, number, and location. In the dilute limit of these experiments, the condensate is well described by a mean field theory and a macroscopic wave function solving the so-called Gross-Pitaevskii equation. The mathematical tools employed are energy estimates, Gamma convergence, and homogenization techniques. We prove existence of solutions that have properties consistent with the experimental observations. Open problems related to recent experiments are presented.
The work can serve as a reference for mathematical researchers and theoretical physicists interested in superfluidity and quantum fluids, and can also complement a graduate seminar in elliptic PDEs or modelling of physical experiments.
In contrast to a classical fluid, a quantum fluid such as a Bose-Einstein condensate can rotate only through the nucleation of quantized vortices beyond some critical velocity. There are two interesting regimes: one close to the critical velocity, where there is only one vortex that has a very special shape; and another one at high rotation values, for which a dense lattice is observed.
One of the key features related to superfluidity is the existence of these vortices. We address this issue mathematically and derive information on their shape, number, and location. In the dilute limit of these experiments, the condensate is well described by a mean field theory and a macroscopic wave function solving the so-called Gross-Pitaevskii equation. The mathematical tools employed are energy estimates, Gamma convergence, and homogenization techniques. We prove existence of solutions that have properties consistent with the experimental observations. Open problems related to recent experiments are presented.
The work can serve as a reference for mathematical researchers and theoretical physicists interested in superfluidity and quantum fluids, and can also complement a graduate seminar in elliptic PDEs or modelling of physical experiments.
Brugerbedømmelser af Vortices in Bose-Einstein Condensates
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Vortices in Bose-Einstein Condensates findes i følgende kategorier:
- Business og læring > Videnskab
- Hobby og fritid > Sport
- Lægevidenskab og sygepleje
- Matematik og naturvidenskab > Matematik > Regning og matematisk analyse > Differentialregning og differentialligninger
- Matematik og naturvidenskab > Matematik > Anvendt matematik
- Matematik og naturvidenskab > Fysik > Klassisk mekanik
- Matematik og naturvidenskab > Fysik > Materialer / stoffaser > Kondenserede fasers fysik (væskeform og faststoffysik)
- Matematik og naturvidenskab > Fysik > Matematisk fysik
- Idræt og udendørsaktiviteter > Idræt: generelt
- Teknologi, ingeniørvidenskab og landbrug > Maskinteknik og materialer > Materialelære
© 2024 Pling BØGER Registered company number: DK43351621