Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control
- Indbinding:
- Paperback
- Sideantal:
- 304
- Udgivet:
- 14. september 2004
- Udgave:
- 2004
- Størrelse:
- 154x19x235 mm.
- Vægt:
- 454 g.
- 8-11 hverdage.
- 17. januar 2025
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control
Semiconcavity is a natural generalization of concavity that retains most of the good properties known in convex analysis, but arises in a wider range of applications. This text is the first comprehensive exposition of the theory of semiconcave functions, and of the role they play in optimal control and Hamilton-Jacobi equations.
The first part covers the general theory, encompassing all key results and illustrating them with significant examples. The latter part is devoted to applications concerning the Bolza problem in the calculus of variations and optimal exit time problems for nonlinear control systems. The exposition is essentially self-contained since the book includes all prerequisites from convex analysis, nonsmooth analysis, and viscosity solutions.
A central role in the present work is reserved for the study of singularities. Singularities are first investigated for general semiconcave functions, then sharply estimated for solutions of Hamilton-Jacobi equations, and finally analyzed in connection with optimal trajectories of control systems.
Researchers in optimal control, the calculus of variations, and partial differential equations will find this book useful as a state-of-the-art reference for semiconcave functions. Graduate students will profit from this text as it provides a handy-yet rigorous-introduction to modern dynamic programming for nonlinear control systems.
The first part covers the general theory, encompassing all key results and illustrating them with significant examples. The latter part is devoted to applications concerning the Bolza problem in the calculus of variations and optimal exit time problems for nonlinear control systems. The exposition is essentially self-contained since the book includes all prerequisites from convex analysis, nonsmooth analysis, and viscosity solutions.
A central role in the present work is reserved for the study of singularities. Singularities are first investigated for general semiconcave functions, then sharply estimated for solutions of Hamilton-Jacobi equations, and finally analyzed in connection with optimal trajectories of control systems.
Researchers in optimal control, the calculus of variations, and partial differential equations will find this book useful as a state-of-the-art reference for semiconcave functions. Graduate students will profit from this text as it provides a handy-yet rigorous-introduction to modern dynamic programming for nonlinear control systems.
Brugerbedømmelser af Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control findes i følgende kategorier:
- Business og læring > Videnskab
- Lægevidenskab og sygepleje
- Matematik og naturvidenskab > Matematik > Regning og matematisk analyse > Differentialregning og differentialligninger
- Matematik og naturvidenskab > Matematik > Regning og matematisk analyse > Integralregning og integralligninger
- Matematik og naturvidenskab > Matematik > Optimalisering
© 2024 Pling BØGER Registered company number: DK43351621