Rule-Based Evolutionary Online Learning Systems
- Indbinding:
- Paperback
- Sideantal:
- 288
- Udgivet:
- 12. februar 2010
- Størrelse:
- 155x16x235 mm.
- Vægt:
- 441 g.
- 8-11 hverdage.
- 7. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Rule-Based Evolutionary Online Learning Systems
Rule-basedevolutionaryonlinelearningsystems,oftenreferredtoasMichig- style learning classi?er systems (LCSs), were proposed nearly thirty years ago (Holland, 1976; Holland, 1977) originally calling them cognitive systems. LCSs combine the strength of reinforcement learning with the generali- tion capabilities of genetic algorithms promising a ?exible, online general- ing, solely reinforcement dependent learning system. However, despite several initial successful applications of LCSs and their interesting relations with a- mal learning and cognition, understanding of the systems remained somewhat obscured. Questions concerning learning complexity or convergence remained unanswered. Performance in di?erent problem types, problem structures, c- ceptspaces,andhypothesisspacesstayednearlyunpredictable. Thisbookhas the following three major objectives: (1) to establish a facetwise theory - proachforLCSsthatpromotessystemanalysis,understanding,anddesign;(2) to analyze, evaluate, and enhance the XCS classi?er system (Wilson, 1995) by the means of the facetwise approach establishing a fundamental XCS learning theory; (3) to identify both the major advantages of an LCS-based learning approach as well as the most promising potential application areas. Achieving these three objectives leads to a rigorous understanding of LCS functioning that enables the successful application of LCSs to diverse problem types and problem domains. The quantitative analysis of XCS shows that the inter- tive, evolutionary-based online learning mechanism works machine learning competitively yielding a low-order polynomial learning complexity. Moreover, the facetwise analysis approach facilitates the successful design of more - vanced LCSs including Holland¿s originally envisioned cognitivesystems. Martin V.
Brugerbedømmelser af Rule-Based Evolutionary Online Learning Systems
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Rule-Based Evolutionary Online Learning Systems findes i følgende kategorier:
- Business og læring > Computer og IT
- Matematik og naturvidenskab > Matematik > Anvendt matematik
- Matematik og naturvidenskab > Biologi og biovidenskab > Biovidenskab: generelle emner > Neurovidenskab
- Teknologi, ingeniørvidenskab og landbrug > Teknologi: generelle emner > Matematik for ingeniører
- Databehandling og informationsteknologi > Informatik > Matematisk datateori
- Databehandling og informationsteknologi > Informatik > Kunstig intelligens
© 2024 Pling BØGER Registered company number: DK43351621