Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
- Indbinding:
- Paperback
- Sideantal:
- 100
- Udgivet:
- 3. september 2019
- Størrelse:
- 191x6x235 mm.
- Vægt:
- 205 g.
- 8-11 hverdage.
- 7. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
Powertrain electrification, fuel decarburization, and energy diversification are techniques that are spreading all over the world, leading to cleaner and more efficient vehicles. Hybrid electric vehicles (HEVs) are considered a promising technology today to address growing air pollution and energy deprivation. To realize these gains and still maintain good performance, it is critical for HEVs to have sophisticated energy management systems. Supervised by such a system, HEVs could operate in different modes, such as full electric mode and power split mode. Hence, researching and constructing advanced energy management strategies (EMSs) is important for HEVs performance. There are a few books about rule- and optimization-based approaches for formulating energy management systems. Most of them concern traditional techniques and their efforts focus on searching for optimal control policies offline. There is still much room to introduce learning-enabled energy management systems foundedin artificial intelligence and their real-time evaluation and application.
In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.
In this book, a series hybrid electric vehicle was considered as the powertrain model, to describe and analyze a reinforcement learning (RL)-enabled intelligent energy management system. The proposed system can not only integrate predictive road information but also achieve online learning and updating. Detailed powertrain modeling, predictive algorithms, and online updating technology are involved, and evaluation and verification of the presented energy management system is conducted and executed.
Brugerbedømmelser af Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Reinforcement Learning-Enabled Intelligent Energy Management for Hybrid Electric Vehicles findes i følgende kategorier:
- Business og læring
- Teknologi, ingeniørvidenskab og landbrug > Maskinteknik og materialer > Maskinteknik
- Teknologi, ingeniørvidenskab og landbrug > Energiteknik > Elektroteknik
- Teknologi, ingeniørvidenskab og landbrug > Byggeteknik, landmåling og byggeri > Vejbygning og trafikingeniørfaget
- Teknologi, ingeniørvidenskab og landbrug > Transportteknologi og transporterhverv > Motorteknik og erhverv
© 2024 Pling BØGER Registered company number: DK43351621