Random Fields for Spatial Data Modeling
- A Primer for Scientists and Engineers
- Indbinding:
- Hardback
- Sideantal:
- 867
- Udgivet:
- 18. februar 2020
- Udgave:
- 12020
- Størrelse:
- 164x241x53 mm.
- Vægt:
- 1470 g.
- 8-11 hverdage.
- 20. november 2024
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Random Fields for Spatial Data Modeling
Introduction.- Preliminary Remarks.- Why Random Fields?.- Notation and Definitions.- Noise and Errors.- Spatial Data and Basic Processing Procedures.- A Personal Selection of Relevant Books.- Trend Models and Estimation.- Empirical Trend Estimation.- Regression Analysis.- Global Trend Models.- Local Trend Models.- Trend Estimation based on Physical Information.- Trend Based on the Laplace Equation.- Basic Notions of Random Fields.- Introduction.- Single-Point Description.- Stationarity and Statistical Homogeneity.- Variogram versus Covariance.- Permissibility of Covariance Functions.- Permissibility of Variogram Functions.- Additional Topics of Random Field Modeling.- Ergodicity.- Statistical Isotropy.- Anisotropy.- Anisotropic Spectral Densities.- Multipoint Description of Random Fields.- Geometric Properties of Random Fields.- Local Properties.- Covariance Hessian Identity and Geometric Anisotropy.- Spectral Moments.- Length Scales of Random Fields.- Fractal Dimension.- Long-Range Dependence.- Intrinsic Random Fields.- Fractional Brownian Motion.- Classification of Random Fields.- Gaussian Random Fields.- Multivariate Normal Distribution.- Field Integral Formulation.- Useful Properties of Gaussian Random Fields.- Perturbation Theory for Non-Gaussian Probability Densities.- Non-stationary Covariance Functions.- Further Reading.- Random Fields based on Local Interactions.- Spartan Spatial Random Fields.- Two-point Functions and Realizations.- Statistical and Geometric Properties.- Bessel-Lommel Covariance Functions.- Lattice Representations of Spartan Random Fields.- Introduction to Gauss-Markov Random Fields.- From Spartan Random Fields to Gauss-Markov Random Fields.- Lattice Spectral Density.- SSRF Lattice Moments.- SSRF Inverse Covariance Operator on Lattices.- Spartan Random Fields and Langevin Equations.- Introduction to Stochastic Differential Equations.- Classical Harmonic Oscillator.- Stochastic Partial Differential Equations.- Spartan Random Fields and Stochastic Partial Differential Equations.- Covariance and Green''s functions.- Whittle-Matérn Stochastic Partial Differential Equation.- Diversion in Time Series.- Spatial Prediction Fundamentals.- General Principles of Linear Prediction.- Deterministic Interpolation.- Stochastic Methods.- Simple Kriging.- Ordinary Kriging.- Properties of the Kriging Predictor.- Topics Related to the Application of Kriging.- Evaluating Model Performance.- More on Spatial Prediction.- Linear Generalizations of Kriging.- Nonlinear Extensions of Kriging.- Connections with Gaussian Process Regression.- Bayesian Kriging.- Continuum Formulation of Linear Prediction.- The "Local-Interaction" Approach.- Big Spatial Data.- Basic Concepts and Methods of Estimation.- Estimator Properties.- Estimating the Mean with Ordinary Kriging.- Variogram Estimation.- Maximum Likelihood Estimation.- Cross Validation.- More on Estimation.- The Method of Normalized Correlations.- The Method of Maximum Entropy.- Stochastic Local Interactions.- Measuring Ergodicity.- Beyond the Gaussian Models.- Trans-Gaussian Random Fields.- Gaussian Anamorphosis.- Tukey g-h Random Fields.- Transformations based on Kappa Exponentials.- Hermite Polynomials.- Multivariate Student''s t-distribution.- Copula Models.- The Replica Method.- Binary Random Fields.- The Indicator Random Field.- Ising Model.- Generalized Linear Models.- Simulations.- Introduction.- Covariance Matrix Factorization.- Spectral Simulation Methods.- Fast-Fourier-Transform Simulation.- Randomized Spectral Sampling.- Conditional Simulation based on Polarization Method.- Conditional Simulation based on Covariance Matrix Factorization.- Monte Carlo Methods.- Sequential Simulation of Random Fields.- Simulated Annealing.- Karhunen-Loève Expansion.- Karhunen-Loève Expansion of Spartan Random Fields.- Epilogue.- A Jacobi''s Transformation Theorems.- B Tables of SSRF Properties.- C Linear Algebra Facts.- D Kolmogorov-Smirnov Test.- Glossary.- References.- Index
Brugerbedømmelser af Random Fields for Spatial Data Modeling
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Random Fields for Spatial Data Modeling findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621