Python for Probability, Statistics, and Machine Learning
- Indbinding:
- Paperback
- Sideantal:
- 528
- Udgivet:
- 6. november 2023
- Udgave:
- 23003
- Størrelse:
- 155x29x235 mm.
- Vægt:
- 791 g.
- 8-11 hverdage.
- 7. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Python for Probability, Statistics, and Machine Learning
Using a novel integration of mathematics and Python codes, this book illustrates the fundamental concepts that link probability, statistics, and machine learning, so that the reader can not only employ statistical and machine learning models using modern Python modules, but also understand their relative strengths and weaknesses. To clearly connect theoretical concepts to practical implementations, the author provides many worked-out examples along with "Programming Tips" that encourage the reader to write quality Python code. The entire text, including all the figures and numerical results, is reproducible using the Python codes provided, thus enabling readers to follow along by experimenting with the same code on their own computers.
Modern Python modules like Pandas, Sympy, Scikit-learn, Statsmodels, Scipy, Xarray, Tensorflow, and Keras are used to implement and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, interpretability, and regularization. Many abstract mathematical ideas, such as modes of convergence in probability, are explained and illustrated with concrete numerical examples. This book is suitable for anyone with undergraduate-level experience with probability, statistics, or machine learning and with rudimentary knowledge of Python programming.
Modern Python modules like Pandas, Sympy, Scikit-learn, Statsmodels, Scipy, Xarray, Tensorflow, and Keras are used to implement and visualize important machine learning concepts like the bias/variance trade-off, cross-validation, interpretability, and regularization. Many abstract mathematical ideas, such as modes of convergence in probability, are explained and illustrated with concrete numerical examples. This book is suitable for anyone with undergraduate-level experience with probability, statistics, or machine learning and with rudimentary knowledge of Python programming.
Brugerbedømmelser af Python for Probability, Statistics, and Machine Learning
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Python for Probability, Statistics, and Machine Learning findes i følgende kategorier:
- Business og læring > Computer og IT
- Matematik og naturvidenskab > Matematik > Sandsynlighedsregning og statistik
- Teknologi, ingeniørvidenskab og landbrug > Teknologi: generelle emner > Matematik for ingeniører
- Teknologi, ingeniørvidenskab og landbrug > Elektronik og kommunikationsteknik > Kommunikationsteknik / telekommunikation
- Databehandling og informationsteknologi > Databaser > Data mining
- Databehandling og informationsteknologi > Informatik > Matematisk datateori > Matematik til informatikfag
- Databehandling og informationsteknologi > Informatik > Kunstig intelligens > Ekspertsystemer og vidensbaserede systemer
© 2024 Pling BØGER Registered company number: DK43351621