Probabilistic Ranking Techniques in Relational Databases
- Indbinding:
- Paperback
- Sideantal:
- 80
- Udgivet:
- 21. marts 2011
- Størrelse:
- 191x5x235 mm.
- Vægt:
- 169 g.
- 8-11 hverdage.
- 17. januar 2025
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Probabilistic Ranking Techniques in Relational Databases
Ranking queries are widely used in data exploration, data analysis and decision making scenarios. While most of the currently proposed ranking techniques focus on deterministic data, several emerging applications involve data that are imprecise or uncertain. Ranking uncertain data raises new challenges in query semantics and processing, making conventional methods inapplicable. Furthermore, the interplay between ranking and uncertainty models introduces new dimensions for ordering query results that do not exist in the traditional settings. This lecture describes new formulations and processing techniques for ranking queries on uncertain data. The formulations are based on marriage of traditional ranking semantics with possible worlds semantics under widely-adopted uncertainty models. In particular, we focus on discussing the impact of tuple-level and attribute-level uncertainty on the semantics and processing techniques of ranking queries. Under the tuple-level uncertainty model, we describe new processing techniques leveraging the capabilities of relational database systems to recognize and handle data uncertainty in score-based ranking. Under the attribute-level uncertainty model, we describe new probabilistic ranking models and a set of query evaluation algorithms, including sampling-based techniques. We also discuss supporting rank join queries on uncertain data, and we show how to extend current rank join methods to handle uncertainty in scoring attributes. Table of Contents: Introduction / Uncertainty Models / Query Semantics / Methodologies / Uncertain Rank Join / Conclusion
Brugerbedømmelser af Probabilistic Ranking Techniques in Relational Databases
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Probabilistic Ranking Techniques in Relational Databases findes i følgende kategorier:
- Business og læring > Computer og IT
- Reference, information og tværfaglige emner > Forskning og information: generelt > Informationsteori
- Databehandling og informationsteknologi > Computere og hardware > Netværkskomponenter
- Databehandling og informationsteknologi > Programmering / softwareudvikling > Algoritmer og datastrukturer
© 2024 Pling BØGER Registered company number: DK43351621