Probabilistic Finite Element Model Updating Using Bayesian Statistics
- Applications to Aeronautical and Mechanical Engineering
- Indbinding:
- Hardback
- Sideantal:
- 248
- Udgivet:
- 25. november 2016
- Størrelse:
- 251x178x17 mm.
- Vægt:
- 520 g.
- Ukendt - mangler pt..
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Probabilistic Finite Element Model Updating Using Bayesian Statistics
Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and Mechanical Engineering
Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa
Sondipon Adhikari, Swansea University, UK
Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering
Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering.
The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure. The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering.
Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering.
Key features:
* Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students.
* Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations.
The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.
Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa
Sondipon Adhikari, Swansea University, UK
Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering
Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering.
The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure. The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering.
Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering.
Key features:
* Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students.
* Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations.
The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.
Brugerbedømmelser af Probabilistic Finite Element Model Updating Using Bayesian Statistics
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Probabilistic Finite Element Model Updating Using Bayesian Statistics findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621