Privacy-Preserving Machine Learning
- Indbinding:
- Paperback
- Sideantal:
- 300
- Udgivet:
- 21. april 2023
- Størrelse:
- 236x187x21 mm.
- Vægt:
- 636 g.
- 8-11 hverdage.
- 16. december 2024
På lager
Forlænget returret til d. 31. januar 2025
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Privacy-Preserving Machine Learning
Keep sensitive user data safe and secure, without sacrificing theaccuracy of your machine learning models.In Privacy Preserving Machine Learning, you will learn:Differential privacy techniques and their application insupervised learningPrivacy for frequency or mean estimation, Naive Bayes classifier,and deep learningDesigning and applying compressive privacy for machine learningPrivacy-preserving synthetic data generation approachesPrivacy-enhancing technologies for data mining and database applicationsPrivacy Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. Youll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels and seniorities will benefit from incorporating these privacy-preserving practices into their model development.
Brugerbedømmelser af Privacy-Preserving Machine Learning
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Privacy-Preserving Machine Learning findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621