On Optimality and Duality Theory for Optimization Problems
- Indbinding:
- Paperback
- Sideantal:
- 116
- Udgivet:
- 14. marts 2023
- Størrelse:
- 152x7x229 mm.
- Vægt:
- 181 g.
- 2-3 uger.
- 26. november 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af On Optimality and Duality Theory for Optimization Problems
dual model corresponding to given primal problems and some duality results were
piled up in Section 1.4. In Section 1.5, we recall standard minimax programming
problem and present a small overview on the same. In Section 1.6, we introduce a
short note on saddle point optimality problems. In Section 1.7, we present basic concept
of multiobjective optimization problems and its solutions. Section 1.8 recalls
constraint qualification in multiobjective optimization problems. In Section 1.9,
scalar and multiobjective semi-infinite optimization problems is introduced. In Section
1.10, we remind definitions of Lipschitz and locally Lipschitz continuity. Section
1.11 presents definition, basic properties of convexificators and recalls generalized
convexity in terms of convexificators. Sections 1.12 is all about brief literature on
semidefinite programming problem and related concepts for further use. Section
1.13 presents short introduction on vector variational inequality. Finally, Section
1.14 includes basic details of mathematical programming with vanishing constraints
and its literature.
piled up in Section 1.4. In Section 1.5, we recall standard minimax programming
problem and present a small overview on the same. In Section 1.6, we introduce a
short note on saddle point optimality problems. In Section 1.7, we present basic concept
of multiobjective optimization problems and its solutions. Section 1.8 recalls
constraint qualification in multiobjective optimization problems. In Section 1.9,
scalar and multiobjective semi-infinite optimization problems is introduced. In Section
1.10, we remind definitions of Lipschitz and locally Lipschitz continuity. Section
1.11 presents definition, basic properties of convexificators and recalls generalized
convexity in terms of convexificators. Sections 1.12 is all about brief literature on
semidefinite programming problem and related concepts for further use. Section
1.13 presents short introduction on vector variational inequality. Finally, Section
1.14 includes basic details of mathematical programming with vanishing constraints
and its literature.
Brugerbedømmelser af On Optimality and Duality Theory for Optimization Problems
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen On Optimality and Duality Theory for Optimization Problems findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621