Non-Linear Spectral Unmixing of Hyperspectral Data
- 2-3 uger.
- 17. december 2024
På lager
Forlænget returret til d. 31. januar 2025
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Non-Linear Spectral Unmixing of Hyperspectral Data
This book is based on satellite image processing focussing on the potential of hyperspectral image processing (HIP) research taking a case study-based approach. It covers the background, objectives, and practical issues related to HIP and substantiates the needs/potentials of said technology for discrimination of pure and mixed endmembers in pixels including unsupervised target detection algorithms for extraction of unknown spectra of pure pixels. It includes application of machine and deep learning models on hyperspectral data and its role in Spatial Big Data Analytics.
Features:
Focusses on capability of Hyperspectral data in characterization of linear and non-linear interactions of a natural forest biome Illustrates modelling the eco-dynamics of Mangrove habitats in the coastal ecosystem Discusses adoption of appropriate technique for handling spatial data (with coarse resolution) Covers machine/deep learning models for classification Implements non-linear spectral unmixing for identifying fractional abundance of diverse mangrove species of Coastal Sunderbans This book is aimed at researchers and graduate students in digital image processing, big data, and spatial informatics.
Features:
Focusses on capability of Hyperspectral data in characterization of linear and non-linear interactions of a natural forest biome Illustrates modelling the eco-dynamics of Mangrove habitats in the coastal ecosystem Discusses adoption of appropriate technique for handling spatial data (with coarse resolution) Covers machine/deep learning models for classification Implements non-linear spectral unmixing for identifying fractional abundance of diverse mangrove species of Coastal Sunderbans This book is aimed at researchers and graduate students in digital image processing, big data, and spatial informatics.
Brugerbedømmelser af Non-Linear Spectral Unmixing of Hyperspectral Data
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
© 2024 Pling BØGER Registered company number: DK43351621