De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Non-classical Aspects in Proof Complexity

Non-classical Aspects in Proof Complexityaf Olaf Beyersdorff
Bag om Non-classical Aspects in Proof Complexity

Proof complexity focuses on the complexity of theorem proving procedures, a topic which is tightly linked to questions from computational complexity (the separation of complexity classes), first-order arithmetic theories (bounded arithmetic), and practical questions as automated theorem proving. One fascinating question in proof complexity is whether powerful computational resources as randomness or oracle access can shorten proofs or speed up proof search. In this dissertation we investigated these questions for proof systems that use a limited amount of non-uniform information (advice). This model is very interesting as¿- in contrast to the classical setting¿-it admits an optimal proof system as recently shown by Cook and Krajícek. We give a complete complexity-theoretic classification of all languages admitting polynomially bounded proof systems with advice and explore whether the advice can be simplified or even eliminated while still preserving the power of the system. Propositional proof systems enjoy a close connection to bounded arithmetic. Cook and Krajícek (JSL¿07) use the correspondence between proof systems with advice and arithmetic theories to obtain a very strong Karp-Lipton collapse result in bounded arithmetic: if SAT has polynomial-size Boolean circuits, then the polynomial hierarchy collapses to the Boolean hierarchy. Here we show that this collapse consequence is in fact optimal with respect to the theory PV, thereby answering a question of Cook and Krajícek. The second main topic of this dissertation is parameterized proof complexity, a paradigm developed by Dantchev, Martin, and Szeider (FOCS¿07) which transfers the highly successful approach of parameterized complexity to the study of proof lengths. In this thesis we introduce a powerful two player game to model and study the complexity of proofs in a tree-like Resolution system in a setting arising from parameterized complexity. This game is also applicable to show strong lower bounds in other tree-like proof systems. Moreover, we obtain the first lower bound to the general dag-like Parameterized Resolution system for the pigeonhole principle and study a variant of the DPLL algorithm in the parameterized setting.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783954040360
  • Indbinding:
  • Paperback
  • Sideantal:
  • 140
  • Udgivet:
  • 9. marts 2012
  • Størrelse:
  • 148x7x210 mm.
  • Vægt:
  • 192 g.
  • 2-3 uger.
  • 16. december 2024
På lager
Forlænget returret til d. 31. januar 2025

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Non-classical Aspects in Proof Complexity

Proof complexity focuses on the complexity of theorem proving procedures, a
topic which is tightly linked to questions from computational complexity (the
separation of complexity classes), first-order arithmetic theories (bounded arithmetic),
and practical questions as automated theorem proving. One fascinating
question in proof complexity is whether powerful computational resources as randomness
or oracle access can shorten proofs or speed up proof search. In this
dissertation we investigated these questions for proof systems that use a limited
amount of non-uniform information (advice). This model is very interesting as¿-
in contrast to the classical setting¿-it admits an optimal proof system as recently
shown by Cook and Krajícek. We give a complete complexity-theoretic classification
of all languages admitting polynomially bounded proof systems with advice
and explore whether the advice can be simplified or even eliminated while still
preserving the power of the system.
Propositional proof systems enjoy a close connection to bounded arithmetic.
Cook and Krajícek (JSL¿07) use the correspondence between proof systems with
advice and arithmetic theories to obtain a very strong Karp-Lipton collapse result
in bounded arithmetic: if SAT has polynomial-size Boolean circuits, then the
polynomial hierarchy collapses to the Boolean hierarchy. Here we show that this
collapse consequence is in fact optimal with respect to the theory PV, thereby
answering a question of Cook and Krajícek.
The second main topic of this dissertation is parameterized proof complexity, a
paradigm developed by Dantchev, Martin, and Szeider (FOCS¿07) which transfers
the highly successful approach of parameterized complexity to the study of proof
lengths. In this thesis we introduce a powerful two player game to model and
study the complexity of proofs in a tree-like Resolution system in a setting arising
from parameterized complexity. This game is also applicable to show strong
lower bounds in other tree-like proof systems. Moreover, we obtain the first lower
bound to the general dag-like Parameterized Resolution system for the pigeonhole
principle and study a variant of the DPLL algorithm in the parameterized setting.

Brugerbedømmelser af Non-classical Aspects in Proof Complexity