De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Measure Theory for Analysis and Probability

Bag om Measure Theory for Analysis and Probability

This book covers major measure theory topics with a fairly extensive study of their applications to probability and analysis. It begins by demonstrating the essential nature of measure theory before delving into the construction of measures and the development of integration theory. Special attention is given to probability spaces and random variables/vectors. The text then explores product spaces, Radon-Nikodym and Jordan-Hahn theorems, providing a detailed account of ¿¿¿¿¿¿¿¿ spaces and their duals. After revisiting probability theory, it discusses standard limit theorems such as the laws of large numbers and the central limit theorem, with detailed treatment of weak convergence and the role of characteristic functions. The book further explores conditional probabilities and expectations, preceded by motivating discussions. It discusses the construction of probability measures on infinite product spaces, presenting Tulcea's theorem and Kolmogorov's consistency theorem. The text concludes with the construction of Brownian motion, examining its path properties and the significant strong Markov property. This comprehensive guide is invaluable not only for those pursuing probability theory seriously but also for those seeking a robust foundation in measure theory to advance in modern analysis. By effectively motivating readers, it underscores the critical role of measure theory in grasping fundamental probability concepts.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9789819779284
  • Indbinding:
  • Hardback
  • Sideantal:
  • 401
  • Udgivet:
  • 26. januar 2025
  • Udgave:
  • 2024
  • Størrelse:
  • 155x235x0 mm.
  • Kan forudbestilles.
  • 26. januar 2025
Forlænget returret til d. 31. januar 2025
  •  

    Kan ikke leveres inden jul.
    Køb nu og print et gavebevis

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Measure Theory for Analysis and Probability

This book covers major measure theory topics with a fairly extensive study of their applications to probability and analysis. It begins by demonstrating the essential nature of measure theory before delving into the construction of measures and the development of integration theory. Special attention is given to probability spaces and random variables/vectors. The text then explores product spaces, Radon-Nikodym and Jordan-Hahn theorems, providing a detailed account of ¿¿¿¿¿¿¿¿ spaces and their duals. After revisiting probability theory, it discusses standard limit theorems such as the laws of large numbers and the central limit theorem, with detailed treatment of weak convergence and the role of characteristic functions.
The book further explores conditional probabilities and expectations, preceded by motivating discussions. It discusses the construction of probability measures on infinite product spaces, presenting Tulcea's theorem and Kolmogorov's consistency theorem. The text concludes with the construction of Brownian motion, examining its path properties and the significant strong Markov property. This comprehensive guide is invaluable not only for those pursuing probability theory seriously but also for those seeking a robust foundation in measure theory to advance in modern analysis. By effectively motivating readers, it underscores the critical role of measure theory in grasping fundamental probability concepts.

Brugerbedømmelser af Measure Theory for Analysis and Probability



Find lignende bøger
Bogen Measure Theory for Analysis and Probability findes i følgende kategorier: