De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Maximum Likelihood Estimation

- Logic and Practice

Bag om Maximum Likelihood Estimation

In this volume the underlying logic and practice of maximum likelihood (ML) estimation is made clear by providing a general modelling framework that utilizes the tools of ML methods. This framework offers readers a flexible modelling strategy since it accommodates cases from the simplest linear models to the most complex nonlinear models that link a system of endogenous and exogenous variables with non-normal distributions. Using examples to illustrate the techniques of finding ML estimators and estimates, Eliason discusses: what properties are desirable in an estimator; basic techniques for finding ML solutions; the general form of the covariance matrix for ML estimates; the sampling distribution of ML estimators; the application of ML in the normal distribution as well as in other useful distributions; and some helpful illustrations of likelihoods.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9780803941076
  • Indbinding:
  • Paperback
  • Sideantal:
  • 96
  • Udgivet:
  • 29. september 1993
  • Størrelse:
  • 141x216x5 mm.
  • Vægt:
  • 118 g.
  • 2-4 uger.
  • 8. februar 2025

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Maximum Likelihood Estimation

In this volume the underlying logic and practice of maximum likelihood (ML) estimation is made clear by providing a general modelling framework that utilizes the tools of ML methods. This framework offers readers a flexible modelling strategy since it accommodates cases from the simplest linear models to the most complex nonlinear models that link a system of endogenous and exogenous variables with non-normal distributions. Using examples to illustrate the techniques of finding ML estimators and estimates, Eliason discusses: what properties are desirable in an estimator; basic techniques for finding ML solutions; the general form of the covariance matrix for ML estimates; the sampling distribution of ML estimators; the application of ML in the normal distribution as well as in other useful distributions; and some helpful illustrations of likelihoods.

Brugerbedømmelser af Maximum Likelihood Estimation



Find lignende bøger
Bogen Maximum Likelihood Estimation findes i følgende kategorier: