De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Machine Learning System Design

Machine Learning System Designaf Valerii Babushkin
Bag om Machine Learning System Design

Get the big picture and the important details with this end-to-end guide for designing highly effective, reliable machine learning systems.From information gathering to release and maintenance, Machine Learning System Design guides you step-by-step through every stage of the machine learning process. Inside, you’ll find a reliable framework for building, maintaining, and improving machine learning systems at any scale or complexity. In Machine Learning System Design: With end-to-end examples you will learn: • The big picture of machine learning system design • Analyzing a problem space to identify the optimal ML solution • Ace ML system design interviews • Selecting appropriate metrics and evaluation criteria • Prioritizing tasks at different stages of ML system design • Solving dataset-related problems with data gathering, error analysis, and feature engineering • Recognizing common pitfalls in ML system development • Designing ML systems to be lean, maintainable, and extensible over time Authors Valeri Babushkin and Arseny Kravchenko have filled this unique handbook with campfire stories and personal tips from their own extensive careers. You’ll learn directly from their experience as you consider every facet of a machine learning system, from requirements gathering and data sourcing to deployment and management of the finished system. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology Designing and delivering a machine learning system is an intricate multistep process that requires many skills and roles. Whether you’re an engineer adding machine learning to an existing application or designing a ML system from the ground up, you need to navigate massive datasets and streams, lock down testing and deployment requirements, and master the unique complexities of putting ML models into production. That’s where this book comes in. About the book Machine Learning System Design shows you how to design and deploy a machine learning project from start to finish. You’ll follow a step-by-step framework for designing, implementing, releasing, and maintaining ML systems. As you go, requirement checklists and real-world examples help you prepare to deliver and optimize your own ML systems. You’ll especially love the campfire stories and personal tips, and ML system design interview tips. What's inside • Metrics and evaluation criteria • Solve common dataset problems • Common pitfalls in ML system development • ML system design interview tips About the reader For readers who know the basics of software engineering and machine learning. Examples in Python. About the author Valerii Babushkin is an accomplished data science leader with extensive experience. He currently serves as a Senior Principal at BP. Arseny Kravchenko is a seasoned ML engineer currently working as a Senior Staff Machine Learning Engineer at Instrumental. Table of Contents Part 1 1 Essentials of machine learning system design 2 Is there a problem? 3 Preliminary research 4 Design document Part 2 5 Loss functions and metrics 6 Gathering datasets 7 Validation schemas 8 Baseline solution Part 3 9 Error analysis 10 Training pipelines 11 Features and feature engineering 12 Measuring and reporting results Part 4 13 Integration 14 Monitoring and reliability 15 Serving and inference optimization 16 Ownership and maintenance

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9781633438750
  • Indbinding:
  • Hardback
  • Sideantal:
  • 384
  • Udgivet:
  • 14. april 2025
  • Kan forudbestilles.
  • 14. april 2025
  • Bogen kan først forudbestilles 2 måneder før udgivelsesdatoen

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Machine Learning System Design

Get the big picture and the important details with this end-to-end guide for designing highly effective, reliable machine learning systems.From information gathering to release and maintenance, Machine Learning System Design guides you step-by-step through every stage of the machine learning process. Inside, you’ll find a reliable framework for building, maintaining, and improving machine learning systems at any scale or complexity. In Machine Learning System Design: With end-to-end examples you will learn: • The big picture of machine learning system design • Analyzing a problem space to identify the optimal ML solution • Ace ML system design interviews • Selecting appropriate metrics and evaluation criteria • Prioritizing tasks at different stages of ML system design • Solving dataset-related problems with data gathering, error analysis, and feature engineering • Recognizing common pitfalls in ML system development • Designing ML systems to be lean, maintainable, and extensible over time Authors Valeri Babushkin and Arseny Kravchenko have filled this unique handbook with campfire stories and personal tips from their own extensive careers. You’ll learn directly from their experience as you consider every facet of a machine learning system, from requirements gathering and data sourcing to deployment and management of the finished system. Purchase of the print book includes a free eBook in PDF and ePub formats from Manning Publications. About the technology Designing and delivering a machine learning system is an intricate multistep process that requires many skills and roles. Whether you’re an engineer adding machine learning to an existing application or designing a ML system from the ground up, you need to navigate massive datasets and streams, lock down testing and deployment requirements, and master the unique complexities of putting ML models into production. That’s where this book comes in. About the book Machine Learning System Design shows you how to design and deploy a machine learning project from start to finish. You’ll follow a step-by-step framework for designing, implementing, releasing, and maintaining ML systems. As you go, requirement checklists and real-world examples help you prepare to deliver and optimize your own ML systems. You’ll especially love the campfire stories and personal tips, and ML system design interview tips. What's inside • Metrics and evaluation criteria • Solve common dataset problems • Common pitfalls in ML system development • ML system design interview tips About the reader For readers who know the basics of software engineering and machine learning. Examples in Python. About the author Valerii Babushkin is an accomplished data science leader with extensive experience. He currently serves as a Senior Principal at BP. Arseny Kravchenko is a seasoned ML engineer currently working as a Senior Staff Machine Learning Engineer at Instrumental. Table of Contents Part 1 1 Essentials of machine learning system design 2 Is there a problem? 3 Preliminary research 4 Design document Part 2 5 Loss functions and metrics 6 Gathering datasets 7 Validation schemas 8 Baseline solution Part 3 9 Error analysis 10 Training pipelines 11 Features and feature engineering 12 Measuring and reporting results Part 4 13 Integration 14 Monitoring and reliability 15 Serving and inference optimization 16 Ownership and maintenance

Brugerbedømmelser af Machine Learning System Design



Find lignende bøger
Bogen Machine Learning System Design findes i følgende kategorier: