De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Machine Learning Meets Quantum Physics

Bag om Machine Learning Meets Quantum Physics

Introduction to Material Modeling.- Kernel Methods for Quantum Chemistry.- Introduction to Neural Networks.- Building nonparametric n-body force fields using Gaussian process regression.- Machine-learning of atomic-scale properties based on physical principles.- Quantum Machine Learning with Response Operators in Chemical Compound Space.- Physical extrapolation of quantum observables by generalization with Gaussian Processes.- Message Passing Neural Networks.- Learning representations of molecules and materials with atomistic neural networks.- Molecular Dynamics with Neural Network Potentials.- High-Dimensional Neural Network Potentials for Atomistic Simulations.- Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights.- Active learning and Uncertainty Estimation.- Machine Learning for Molecular Dynamics on Long Timescales.- Database-driven High-Throughput Calculations and Machine Learning Models for Materials Design.- Polymer Genome: A polymer informatics platform to accelerate polymer discovery.- Bayesian Optimization in Materials Science.- Recommender Systems for Materials Discovery.- Generative Models for Automatic Chemical Design.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783030402440
  • Indbinding:
  • Paperback
  • Sideantal:
  • 467
  • Udgivet:
  • 4. juni 2020
  • Udgave:
  • 12020
  • Størrelse:
  • 234x154x30 mm.
  • Vægt:
  • 726 g.
  • 8-11 hverdage.
  • 13. februar 2025
På lager

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Machine Learning Meets Quantum Physics

Introduction to Material Modeling.- Kernel Methods for Quantum Chemistry.- Introduction to Neural Networks.- Building nonparametric n-body force fields using Gaussian process regression.- Machine-learning of atomic-scale properties based on physical principles.- Quantum Machine Learning with Response Operators in Chemical Compound Space.- Physical extrapolation of quantum observables by generalization with Gaussian Processes.- Message Passing Neural Networks.- Learning representations of molecules and materials with atomistic neural networks.- Molecular Dynamics with Neural Network Potentials.- High-Dimensional Neural Network Potentials for Atomistic Simulations.- Construction of Machine Learned Force Fields with Quantum Chemical Accuracy: Applications and Chemical Insights.- Active learning and Uncertainty Estimation.- Machine Learning for Molecular Dynamics on Long Timescales.- Database-driven High-Throughput Calculations and Machine Learning Models for Materials Design.- Polymer Genome: A polymer informatics platform to accelerate polymer discovery.- Bayesian Optimization in Materials Science.- Recommender Systems for Materials Discovery.- Generative Models for Automatic Chemical Design.

Brugerbedømmelser af Machine Learning Meets Quantum Physics



Find lignende bøger
Bogen Machine Learning Meets Quantum Physics findes i følgende kategorier: