Linear Algebra and Learning from Data
- Indbinding:
- Hardback
- Sideantal:
- 446
- Udgivet:
- 31. januar 2019
- Størrelse:
- 204x239x19 mm.
- Vægt:
- 924 g.
På lager
Leveringstid:
4-7 hverdage
Forventet levering: 13. november 2024
Beskrivelse af Linear Algebra and Learning from Data
Linear algebra and the foundations of deep learning, together at last! From Professor Gilbert Strang, acclaimed author of Introduction to Linear Algebra, comes Linear Algebra and Learning from Data, the first textbook that teaches linear algebra together with deep learning and neural nets. This readable yet rigorous textbook contains a complete course in the linear algebra and related mathematics that students need to know to get to grips with learning from data. Included are: the four fundamental subspaces, singular value decompositions, special matrices, large matrix computation techniques, compressed sensing, probability and statistics, optimization, the architecture of neural nets, stochastic gradient descent and backpropagation.
Brugerbedømmelser af Linear Algebra and Learning from Data
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Linear Algebra and Learning from Data findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621