Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines
- Indbinding:
- Hardback
- Sideantal:
- 320
- Udgivet:
- 19. marts 2023
- Udgave:
- 23001
- Størrelse:
- 160x23x241 mm.
- Vægt:
- 647 g.
- 8-11 hverdage.
- 6. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines
This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions¿Chebyshev, Legendre, Gegenbauer, and Jacobi¿are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.
On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.
On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.
Brugerbedømmelser af Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Learning with Fractional Orthogonal Kernel Classifiers in Support Vector Machines findes i følgende kategorier:
- Business og læring > Computer og IT
- Matematik og naturvidenskab > Matematik > Algebra
- Matematik og naturvidenskab > Matematik > Optimalisering
- Databehandling og informationsteknologi > Programmering / softwareudvikling > Programmeringssprog og scriptsprog
- Databehandling og informationsteknologi > Databaser
- Databehandling og informationsteknologi > Informatik > Kunstig intelligens > Machine learning
- Databehandling og informationsteknologi > Informatik > Kunstig intelligens > Mønstergenkendelse
© 2024 Pling BØGER Registered company number: DK43351621