Learn all about NumPy
- Indbinding:
- Paperback
- Sideantal:
- 222
- Udgivet:
- 16. maj 2023
- Størrelse:
- 152x229x12 mm.
- Vægt:
- 304 g.
- 2-3 uger.
- 13. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Learn all about NumPy
Learn all about NumPy NumPy, short for Numerical Python, is a powerful library in the Python ecosystem that provides support for efficient numerical computations, particularly with large multidimensional arrays and matrices. It serves as a fundamental building block for scientific computing and data analysis in Python. The book covers the following: 1 Introduction to NumPy
What is NumPy?
History and background
Advantages and applications
Installing NumPy 2 NumPy Basics
NumPy arrays: creation, attributes, and operations
Data types and casting
Indexing and slicing arrays
Array manipulation: reshaping, resizing, and stacking
Array broadcasting 3 Array Computations and Mathematical Operations
Element-wise operations
Mathematical functions and operations
Linear algebra with NumPy
Random number generation with NumPy 4 Advanced Array Operations
Array sorting and searching
Fancy indexing and Boolean indexing
Array iteration and vectorization
Broadcasting rules and examples 5 Working with Structured Data
Structured arrays
Structured data manipulation
Record arrays
6 File Input and Output
Reading and writing arrays to files
File formats (CSV, text, binary)
Memory-mapping files 7 Performance and Optimization
Understanding array views and copies
Memory management and optimization techniques
Vectorization and avoiding loops
Profiling and benchmarking NumPy code 8 Integration with Other Libraries
Integration with pandas for data analysis
Visualization with Matplotlib and NumPy
SciPy: advanced scientific computing with NumPy 9 NumPy Best Practices and Tips
Writing efficient and readable code
Code organization and modularization
Debugging and error handling
Testing and documenting NumPy code 10 Case Studies and Examples
Solving common mathematical problems with NumPy
Image processing and manipulation with NumPy
Data analysis examples using NumPy 11 Advanced Topics and Future Directions
NumPy extensions and alternative libraries
GPU acceleration with NumPy
Distributed computing with NumPy
NumPy in machine learning and deep learning frameworks
What is NumPy?
History and background
Advantages and applications
Installing NumPy 2 NumPy Basics
NumPy arrays: creation, attributes, and operations
Data types and casting
Indexing and slicing arrays
Array manipulation: reshaping, resizing, and stacking
Array broadcasting 3 Array Computations and Mathematical Operations
Element-wise operations
Mathematical functions and operations
Linear algebra with NumPy
Random number generation with NumPy 4 Advanced Array Operations
Array sorting and searching
Fancy indexing and Boolean indexing
Array iteration and vectorization
Broadcasting rules and examples 5 Working with Structured Data
Structured arrays
Structured data manipulation
Record arrays
6 File Input and Output
Reading and writing arrays to files
File formats (CSV, text, binary)
Memory-mapping files 7 Performance and Optimization
Understanding array views and copies
Memory management and optimization techniques
Vectorization and avoiding loops
Profiling and benchmarking NumPy code 8 Integration with Other Libraries
Integration with pandas for data analysis
Visualization with Matplotlib and NumPy
SciPy: advanced scientific computing with NumPy 9 NumPy Best Practices and Tips
Writing efficient and readable code
Code organization and modularization
Debugging and error handling
Testing and documenting NumPy code 10 Case Studies and Examples
Solving common mathematical problems with NumPy
Image processing and manipulation with NumPy
Data analysis examples using NumPy 11 Advanced Topics and Future Directions
NumPy extensions and alternative libraries
GPU acceleration with NumPy
Distributed computing with NumPy
NumPy in machine learning and deep learning frameworks
Brugerbedømmelser af Learn all about NumPy
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
© 2024 Pling BØGER Registered company number: DK43351621