De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Integral Geometry and Inverse Problems for Kinetic Equations

Bag om Integral Geometry and Inverse Problems for Kinetic Equations

In this monograph a method for proving the solvability of integral geometry problems and inverse problems for kinetic equations is presented. The application of this method has led to interesting problems of the Dirichlet type for third order differential equations, the solvability of which appears to depend on the geometry of the domain for which the problem is stated. Another considered subject is the problem of integral geometry on paraboloids, in particular the uniqueness of solutions to the Goursat problem for a differential inequality, which implies new theorems on the uniqueness of solutions to this problem for a class of quasilinear hyperbolic equations. A class of multidimensional inverse problems associated with problems of integral geometry and the inverse problem for the quantum kinetic equations are also included.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783110354690
  • Indbinding:
  • Hardback
  • Sideantal:
  • 207
  • Udgivet:
  • 20. december 2001
  • Udgave:
  • 2014
  • Vægt:
  • 480 g.
  • 2-3 uger.
  • 10. december 2024

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Integral Geometry and Inverse Problems for Kinetic Equations

In this monograph a method for proving the solvability of integral geometry problems and inverse problems for kinetic equations is presented. The application of this method has led to interesting problems of the Dirichlet type for third order differential equations, the solvability of which appears to depend on the geometry of the domain for which the problem is stated. Another considered subject is the problem of integral geometry on paraboloids, in particular the uniqueness of solutions to the Goursat problem for a differential inequality, which implies new theorems on the uniqueness of solutions to this problem for a class of quasilinear hyperbolic equations. A class of multidimensional inverse problems associated with problems of integral geometry and the inverse problem for the quantum kinetic equations are also included.

Brugerbedømmelser af Integral Geometry and Inverse Problems for Kinetic Equations