Information Criteria and Statistical Modeling
indgår i Springer Series in Statistics serien
- Indbinding:
- Paperback
- Sideantal:
- 288
- Udgivet:
- 23. november 2010
- Størrelse:
- 155x16x235 mm.
- Vægt:
- 441 g.
- 8-11 hverdage.
- 7. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Information Criteria and Statistical Modeling
The Akaike information criterion (AIC) derived as an estimator of the Kullback-Leibler information discrepancy provides a useful tool for evaluating statistical models, and numerous successful applications of the AIC have been reported in various fields of natural sciences, social sciences and engineering.
One of the main objectives of this book is to provide comprehensive explanations of the concepts and derivations of the AIC and related criteria, including Schwarz¿s Bayesian information criterion (BIC), together with a wide range of practical examples of model selection and evaluation criteria. A secondary objective is to provide a theoretical basis for the analysis and extension of information criteria via a statistical functional approach. A generalized information criterion (GIC) and a bootstrap information criterion are presented, which provide unified tools for modeling and model evaluation for a diverse range of models, including various types of nonlinear models and model estimation procedures such as robust estimation, the maximum penalized likelihood method and a Bayesian approach.
One of the main objectives of this book is to provide comprehensive explanations of the concepts and derivations of the AIC and related criteria, including Schwarz¿s Bayesian information criterion (BIC), together with a wide range of practical examples of model selection and evaluation criteria. A secondary objective is to provide a theoretical basis for the analysis and extension of information criteria via a statistical functional approach. A generalized information criterion (GIC) and a bootstrap information criterion are presented, which provide unified tools for modeling and model evaluation for a diverse range of models, including various types of nonlinear models and model estimation procedures such as robust estimation, the maximum penalized likelihood method and a Bayesian approach.
Brugerbedømmelser af Information Criteria and Statistical Modeling
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Information Criteria and Statistical Modeling findes i følgende kategorier:
- Business og læring > Computer og IT
- Reference, information og tværfaglige emner > Forskning og information: generelt > Informationsteori
- Reference, information og tværfaglige emner > Forskning og information: generelt > Kodeteori og kryptologi
- Matematik og naturvidenskab > Matematik > Sandsynlighedsregning og statistik
- Matematik og naturvidenskab > Matematik > Anvendt matematik > Matematisk modellering
- Teknologi, ingeniørvidenskab og landbrug > Teknologi: generelle emner > Matematik for ingeniører
- Databehandling og informationsteknologi > Databaser > Data mining
- Databehandling og informationsteknologi > Informatik > Matematisk datateori > Matematik til informatikfag
- Databehandling og informationsteknologi > Informatik > Datamodellering og simulering
- Databehandling og informationsteknologi > Informatik > Kunstig intelligens > Ekspertsystemer og vidensbaserede systemer
© 2024 Pling BØGER Registered company number: DK43351621