Hyperfunctions and Harmonic Analysis on Symmetric Spaces
indgår i Progress in Mathematics serien
- Indbinding:
- Hardback
- Sideantal:
- 186
- Udgivet:
- 1. januar 1984
- Udgave:
- 1984
- Størrelse:
- 156x13x234 mm.
- Vægt:
- 458 g.
- 8-11 hverdage.
- 16. december 2024
På lager
Forlænget returret til d. 31. januar 2025
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Hyperfunctions and Harmonic Analysis on Symmetric Spaces
During the last ten years a powerful technique for the study of partial differential equations with regular singularities has developed using the theory of hyperfunctions. The technique has had several important applications in harmonic analysis for symmetric spaces.
This book gives an introductory exposition of the theory of hyperfunctions and regular singularities, and on this basis it treats two major applications to harmonic analysis. The first is to the proof of Helgason's conjecture, due to Kashiwara et al., which represents eigenfunctions on Riemannian symmetric spaces as Poisson integrals of their hyperfunction boundary values.
A generalization of this result involving the full boundary of the space is also given. The second topic is the construction of discrete series for semisimple symmetric spaces, with an unpublished proof, due to Oshima, of a conjecture of Flensted-Jensen.
This first English introduction to hyperfunctions brings readers to the forefront of research in the theory of harmonic analysis on symmetric spaces. A substantial bibliography is also included. This volume is based on a paper which was awarded the 1983 University of Copenhagen Gold Medal Prize.
This book gives an introductory exposition of the theory of hyperfunctions and regular singularities, and on this basis it treats two major applications to harmonic analysis. The first is to the proof of Helgason's conjecture, due to Kashiwara et al., which represents eigenfunctions on Riemannian symmetric spaces as Poisson integrals of their hyperfunction boundary values.
A generalization of this result involving the full boundary of the space is also given. The second topic is the construction of discrete series for semisimple symmetric spaces, with an unpublished proof, due to Oshima, of a conjecture of Flensted-Jensen.
This first English introduction to hyperfunctions brings readers to the forefront of research in the theory of harmonic analysis on symmetric spaces. A substantial bibliography is also included. This volume is based on a paper which was awarded the 1983 University of Copenhagen Gold Medal Prize.
Brugerbedømmelser af Hyperfunctions and Harmonic Analysis on Symmetric Spaces
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Hyperfunctions and Harmonic Analysis on Symmetric Spaces findes i følgende kategorier:
- Business og læring > Videnskab
- Reference, information og tværfaglige emner
- Lægevidenskab og sygepleje
- Matematik og naturvidenskab > Matematik > Grupper og gruppeteori
- Matematik og naturvidenskab > Matematik > Regning og matematisk analyse > Kompleks analyse, komplekse variabler
- Matematik og naturvidenskab > Matematik > Regning og matematisk analyse > Differentialregning og differentialligninger
- Matematik og naturvidenskab > Matematik > Geometri > Differentialgeometri og Riemannsk geometri
© 2024 Pling BØGER Registered company number: DK43351621