De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

High Dimensional Data Visualization Using Self Organizing Maps

High Dimensional Data Visualization Using Self Organizing Mapsaf Vikas Chaudhary
Bag om High Dimensional Data Visualization Using Self Organizing Maps

A Self-organizing map is a non-linear, unsupervised neural network that is used for data clustering and visualization of high-dimensional data. A Self-organizing map uses U-matrix to visualize the high-dimensional data and the distances between neurons on the map. However, the structure of clusters and their shapes are often distorted. For better visualization of high-dimensional data, a new approach high dimensional data visualization Self-organizing map (HVSOM) is explained. The HVSOM preserve the inter-neuron distance and better visualizes the differences between the clusters. In HVSOM, the distances between input data points on the map resemble same those in the original space.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783659818172
  • Indbinding:
  • Paperback
  • Sideantal:
  • 52
  • Udgivet:
  • 11. maj 2018
  • Størrelse:
  • 150x4x220 mm.
  • Vægt:
  • 96 g.
  • 2-3 uger.
  • 13. december 2024
På lager

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af High Dimensional Data Visualization Using Self Organizing Maps

A Self-organizing map is a non-linear, unsupervised neural network that is used for data clustering and visualization of high-dimensional data. A Self-organizing map uses U-matrix to visualize the high-dimensional data and the distances between neurons on the map. However, the structure of clusters and their shapes are often distorted. For better visualization of high-dimensional data, a new approach high dimensional data visualization Self-organizing map (HVSOM) is explained. The HVSOM preserve the inter-neuron distance and better visualizes the differences between the clusters. In HVSOM, the distances between input data points on the map resemble same those in the original space.

Brugerbedømmelser af High Dimensional Data Visualization Using Self Organizing Maps