De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage
Bag om Hierarchical Device Simulation

This book summarizes the research of more than a decade. Its early motivation dates back to the eighties and to the memorable talks Dr. C. Moglestue (FHG Freiburg) gave on his Monte-Carlo solutions of the Boltzmann transport equation at the NASECODE conferences in Ireland. At that time numerical semiconductor device modeling basically implied the application of the drift-diffusion model. On the one hand, those talks clearly showed the potential of the Monte-Carlo model for an accurate description of many important transport issues that cannot adequately be addressed by the drift-diffusion approximation. On the other hand, they also clearly demonstrated that at that time only very few experts were able to extract useful results from a Monte-Carlo simulator. With this background, Monte-Carlo research activities were started in 1986 at the University of Aachen (RWTH Aachen), Germany. Different to many other Monte-Carlo research groups, the Monte-Carlo research in Aachen took place in an environment of active drift-diffusion and hydrodynamic model development.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783709172261
  • Indbinding:
  • Paperback
  • Sideantal:
  • 280
  • Udgivet:
  • 5. september 2012
  • Størrelse:
  • 155x16x235 mm.
  • Vægt:
  • 429 g.
  • 8-11 hverdage.
  • 18. januar 2025
På lager

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Hierarchical Device Simulation

This book summarizes the research of more than a decade. Its early motivation dates back to the eighties and to the memorable talks Dr. C. Moglestue (FHG Freiburg) gave on his Monte-Carlo solutions of the Boltzmann transport equation at the NASECODE conferences in Ireland. At that time numerical semiconductor device modeling basically implied the application of the drift-diffusion model. On the one hand, those talks clearly showed the potential of the Monte-Carlo model for an accurate description of many important transport issues that cannot adequately be addressed by the drift-diffusion approximation. On the other hand, they also clearly demonstrated that at that time only very few experts were able to extract useful results from a Monte-Carlo simulator. With this background, Monte-Carlo research activities were started in 1986 at the University of Aachen (RWTH Aachen), Germany. Different to many other Monte-Carlo research groups, the Monte-Carlo research in Aachen took place in an environment of active drift-diffusion and hydrodynamic model development.

Brugerbedømmelser af Hierarchical Device Simulation