Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group
- Indbinding:
- Hardback
- Sideantal:
- 671
- Udgivet:
- 17. juli 2009
- Udgave:
- 2009
- Størrelse:
- 164x46x242 mm.
- Vægt:
- 1120 g.
- 8-11 hverdage.
- 10. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group
This book presents the first systematic and unified treatment of the theory of mean periodic functions on homogeneous spaces. This area has its classical roots in the beginning of the twentieth century and is now a very active research area, having close connections to harmonic analysis, complex analysis, integral geometry, and analysis on symmetric spaces.
The main purpose of this book is the study of local aspects of spectral analysis and spectral synthesis on Euclidean spaces, Riemannian symmetric spaces of an arbitrary rank and Heisenberg groups. The subject can be viewed as arising from three classical topics: John's support theorem, Schwartz's fundamental principle, and Delsarte's two-radii theorem.
Highly topical, the book contains most of the significant recent results in this area with complete and detailed proofs. In order to make this book accessible to a wide audience, the authors have included an introductory section that develops analysis on symmetric spaces without the use of Lie theory. Challenging open problems are described and explained, and promising new research directions are indicated.
Designed for both experts and beginners in the field, the book is rich in methods for a wide variety of problems in many areas of mathematics.
The main purpose of this book is the study of local aspects of spectral analysis and spectral synthesis on Euclidean spaces, Riemannian symmetric spaces of an arbitrary rank and Heisenberg groups. The subject can be viewed as arising from three classical topics: John's support theorem, Schwartz's fundamental principle, and Delsarte's two-radii theorem.
Highly topical, the book contains most of the significant recent results in this area with complete and detailed proofs. In order to make this book accessible to a wide audience, the authors have included an introductory section that develops analysis on symmetric spaces without the use of Lie theory. Challenging open problems are described and explained, and promising new research directions are indicated.
Designed for both experts and beginners in the field, the book is rich in methods for a wide variety of problems in many areas of mathematics.
Brugerbedømmelser af Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group findes i følgende kategorier:
- Business og læring > Videnskab
- Lægevidenskab og sygepleje
- Matematik og naturvidenskab > Matematik > Regning og matematisk analyse > Funktionsanalyse og transformation
- Matematik og naturvidenskab > Matematik > Regning og matematisk analyse > Differentialregning og differentialligninger
- Matematik og naturvidenskab > Matematik > Regning og matematisk analyse > Integralregning og integralligninger
© 2024 Pling BØGER Registered company number: DK43351621