Hands-On Graph Neural Networks Using Python
- Indbinding:
- Paperback
- Sideantal:
- 354
- Udgivet:
- 14. april 2023
- Størrelse:
- 191x20x235 mm.
- Vægt:
- 661 g.
- 2-3 uger.
- 10. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Hands-On Graph Neural Networks Using Python
Design robust graph neural networks with PyTorch Geometric by combining graph theory and neural networks with the latest developments and apps
Purchase of the print or Kindle book includes a free PDF eBook
Key Features:Implement state-of-the-art graph neural network architectures in Python
Create your own graph datasets from tabular data
Build powerful traffic forecasting, recommender systems, and anomaly detection applications
Book Description:
Graph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as social networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural language processing and computer vision to recommendation systems and drug discovery.
Hands-On Graph Neural Networks Using Python begins with the fundamentals of graph theory and shows you how to create graph datasets from tabular data. As you advance, you'll explore major graph neural network architectures and learn essential concepts such as graph convolution, self-attention, link prediction, and heterogeneous graphs. Finally, the book proposes applications to solve real-life problems, enabling you to build a professional portfolio. The code is readily available online and can be easily adapted to other datasets and apps.
By the end of this book, you'll have learned to create graph datasets, implement graph neural networks using Python and PyTorch Geometric, and apply them to solve real-world problems, along with building and training graph neural network models for node and graph classification, link prediction, and much more.
What You Will Learn:Understand the fundamental concepts of graph neural networks
Implement graph neural networks using Python and PyTorch Geometric
Classify nodes, graphs, and edges using millions of samples
Predict and generate realistic graph topologies
Combine heterogeneous sources to improve performance
Forecast future events using topological information
Apply graph neural networks to solve real-world problems
Who this book is for:
This book is for machine learning practitioners and data scientists interested in learning about graph neural networks and their applications, as well as students looking for a comprehensive reference on this rapidly growing field. Whether you're new to graph neural networks or looking to take your knowledge to the next level, this book has something for you. Basic knowledge of machine learning and Python programming will help you get the most out of this book.
Purchase of the print or Kindle book includes a free PDF eBook
Key Features:Implement state-of-the-art graph neural network architectures in Python
Create your own graph datasets from tabular data
Build powerful traffic forecasting, recommender systems, and anomaly detection applications
Book Description:
Graph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as social networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural language processing and computer vision to recommendation systems and drug discovery.
Hands-On Graph Neural Networks Using Python begins with the fundamentals of graph theory and shows you how to create graph datasets from tabular data. As you advance, you'll explore major graph neural network architectures and learn essential concepts such as graph convolution, self-attention, link prediction, and heterogeneous graphs. Finally, the book proposes applications to solve real-life problems, enabling you to build a professional portfolio. The code is readily available online and can be easily adapted to other datasets and apps.
By the end of this book, you'll have learned to create graph datasets, implement graph neural networks using Python and PyTorch Geometric, and apply them to solve real-world problems, along with building and training graph neural network models for node and graph classification, link prediction, and much more.
What You Will Learn:Understand the fundamental concepts of graph neural networks
Implement graph neural networks using Python and PyTorch Geometric
Classify nodes, graphs, and edges using millions of samples
Predict and generate realistic graph topologies
Combine heterogeneous sources to improve performance
Forecast future events using topological information
Apply graph neural networks to solve real-world problems
Who this book is for:
This book is for machine learning practitioners and data scientists interested in learning about graph neural networks and their applications, as well as students looking for a comprehensive reference on this rapidly growing field. Whether you're new to graph neural networks or looking to take your knowledge to the next level, this book has something for you. Basic knowledge of machine learning and Python programming will help you get the most out of this book.
Brugerbedømmelser af Hands-On Graph Neural Networks Using Python
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Hands-On Graph Neural Networks Using Python findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621