Guide to Data Privacy
- Indbinding:
- Paperback
- Sideantal:
- 332
- Udgivet:
- 5. november 2022
- Udgave:
- 22001
- Størrelse:
- 155x19x235 mm.
- Vægt:
- 505 g.
- 8-11 hverdage.
- 28. november 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Guide to Data Privacy
Data privacy technologies are essential for implementing information systems with privacy by design.
Privacy technologies clearly are needed for ensuring that data does not lead to disclosure, but also that statistics or even data-driven machine learning models do not lead to disclosure. For example, can a deep-learning model be attacked to discover that sensitive data has been used for its training? This accessible textbook presents privacy models, computational definitions of privacy, and methods to implement them. Additionally, the book explains and gives plentiful examples of how to implement¿among other models¿differential privacy, k-anonymity, and secure multiparty computation.
Topics and features:
Provides integrated presentation of data privacy (including tools from statistical disclosure control, privacy-preserving data mining, and privacy for communications)
Discusses privacy requirements and tools fordifferent types of scenarios, including privacy for data, for computations, and for users
Offers characterization of privacy models, comparing their differences, advantages, and disadvantages
Describes some of the most relevant algorithms to implement privacy models
Includes examples of data protection mechanisms
This unique textbook/guide contains numerous examples and succinctly and comprehensively gathers the relevant information. As such, it will be eminently suitable for undergraduate and graduate students interested in data privacy, as well as professionals wanting a concise overview.
Vicenç Torra is Professor with the Department of Computing Science at Umeå University, Umeå, Sweden.
Privacy technologies clearly are needed for ensuring that data does not lead to disclosure, but also that statistics or even data-driven machine learning models do not lead to disclosure. For example, can a deep-learning model be attacked to discover that sensitive data has been used for its training? This accessible textbook presents privacy models, computational definitions of privacy, and methods to implement them. Additionally, the book explains and gives plentiful examples of how to implement¿among other models¿differential privacy, k-anonymity, and secure multiparty computation.
Topics and features:
Provides integrated presentation of data privacy (including tools from statistical disclosure control, privacy-preserving data mining, and privacy for communications)
Discusses privacy requirements and tools fordifferent types of scenarios, including privacy for data, for computations, and for users
Offers characterization of privacy models, comparing their differences, advantages, and disadvantages
Describes some of the most relevant algorithms to implement privacy models
Includes examples of data protection mechanisms
This unique textbook/guide contains numerous examples and succinctly and comprehensively gathers the relevant information. As such, it will be eminently suitable for undergraduate and graduate students interested in data privacy, as well as professionals wanting a concise overview.
Vicenç Torra is Professor with the Department of Computing Science at Umeå University, Umeå, Sweden.
Brugerbedømmelser af Guide to Data Privacy
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Guide to Data Privacy findes i følgende kategorier:
- Business og læring > Computer og IT
- Krop og sind
- Reference, information og tværfaglige emner > Forskning og information: generelt > Kodeteori og kryptologi
- Filosofi og religion > Filosofi > Emner i filosofi > Etik og moralfilosofi
- Databehandling og informationsteknologi > Informationsteknologi: generelle emner > Etiske og sociale aspekter ved IT
- Databehandling og informationsteknologi > Datasikkerhed > Persondata og datasikkerhed
- Databehandling og informationsteknologi > Datasikkerhed > Datakryptering
- Databehandling og informationsteknologi > Datakommunikation og computernetværk > Netværkssikkerhed
© 2024 Pling BØGER Registered company number: DK43351621