Green Machine Learning and Big Data for Smart Grids
- Practices and Applications
- Indbinding:
- Paperback
- Udgivet:
- 20. november 2024
- Ukendt - mangler pt..
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Green Machine Learning and Big Data for Smart Grids
Green Machine Learning and Big Data for Smart Grids: Practices and Applications is a guidebook to the best practices and potential for green data analytics when generating innovative solutions to renewable energy integration in the power grid. This book begins with a solid foundation in the concept of "green" machine learning and the essential technologies for utilising data analytics in smart grids. A variety of scenarios are examined closely, demonstrating the opportunities for supporting renewable energy integration using machine learning, from forecasting and stability prediction to smart metering and disturbance tests. Uses for control of physical components including inverters and converters are examined, along with policy implications. Importantly, real-world case studies and chapter objectives are combined to signpost essential information, and to support understanding and implementation. Part of the cutting-edge series 'Advances in Intelligent Energy Systems', 'Green Machine Learning and Big Data for Smart Grids' provides researchers, students, and industry practitioners with an understanding of the complex interactions and opportunities between data science and sustainable energy systems.
Brugerbedømmelser af Green Machine Learning and Big Data for Smart Grids
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
© 2024 Pling BØGER Registered company number: DK43351621