Functorial Semiotics for Creativity in Music and Mathematics
indgår i Computational Music Science serien
- Indbinding:
- Paperback
- Sideantal:
- 180
- Udgivet:
- 24. april 2023
- Udgave:
- 23001
- Størrelse:
- 210x11x279 mm.
- Vægt:
- 455 g.
- 8-11 hverdage.
- 23. januar 2025
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Functorial Semiotics for Creativity in Music and Mathematics
This book presents a new semiotic theory based upon category theory and applying to a classification of creativity in music and mathematics. It is the first functorial approach to mathematical semiotics that can be applied to AI implementations for creativity by using topos theory and its applications to music theory.
Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing semiotic units - enabling a ¿ech cohomology of manifolds of semiotic entities. It opens up a conceptual mathematics as initiated by Grothendieck and Galois and allows a precise description of musical and mathematical creativity, including a classification thereof in three types. This approach is new, as it connects topos theory, semiotics, creativity theory, and AI objectives for a missing link to HI (Human Intelligence).
The reader can apply creativity research using our classification, cohomology theory, generalized Yoneda embedding, and Java implementation of the presented functorial display of semiotics, especially generalizing the Hjelmslev architecture. The intended audience are academic, industrial, and artistic researchers in creativity.
Of particular interest is the generalized Yoneda embedding in the bidual of the category of categories (Lawvere) - parametrizing semiotic units - enabling a ¿ech cohomology of manifolds of semiotic entities. It opens up a conceptual mathematics as initiated by Grothendieck and Galois and allows a precise description of musical and mathematical creativity, including a classification thereof in three types. This approach is new, as it connects topos theory, semiotics, creativity theory, and AI objectives for a missing link to HI (Human Intelligence).
The reader can apply creativity research using our classification, cohomology theory, generalized Yoneda embedding, and Java implementation of the presented functorial display of semiotics, especially generalizing the Hjelmslev architecture. The intended audience are academic, industrial, and artistic researchers in creativity.
Brugerbedømmelser af Functorial Semiotics for Creativity in Music and Mathematics
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
© 2025 Pling BØGER Registered company number: DK43351621