De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Electrochemical Performance of SnO2 Based Nanocomposites for Supercapacitor Applications

Bag om Electrochemical Performance of SnO2 Based Nanocomposites for Supercapacitor Applications

The environmental pollution and energy crisis forecast a scarcity of fuel, rising global temperatures, and the defeat of biodiversity. The exhaustion of fossil fuel reserves and rapidly rising global warming has heightened public awareness of the necessity to stage out the fossil fuel industry. Consequently, the rapid increase in energy production from renewable sources has compelled the development of new generation energy storage systems because renewable sources cannot produce energy on demand. Renewable resources are virtually infinite in terms of duration, but they are limited in terms of energy available per unit of time, such as solar cells, wind turbines, solar thermal collectors, and geothermal power, they are promising sources of energy with a lesser carbon footprint. As a result, energy storage devices are critical for maximizing the use of renewable energy and to eliminate the carbon foot print from the environment. Moreover, the energy storage device is inevitable for the future of e-Vehicles, consumer electronics and the transmission and distribution of electricity. Energy storage is essential to the energy security of today's energy networks. Most of the energies are stored in the form of raw or refined hydrocarbons, whether in the form of coal heaps or oil and gas reserves. These energy sources are creating more environmental and degradation due to their emissions of greenhouse gases and heat. The only exception is a pumped hydroelectric plant, which can provide a large amount of energy in a short period of time while also improving electric system reliability. The purpose and form of energy storage are likely to change significantly as energy systems evolve to use low-carbon technology. Perhaps two broad trends will drive this change. Initially, with the intermittent nuclear power and static production playing an important role in supplying electricity and it became difficult to match with demand, while imbalances will grow and dominate over the time. Moving away from fossil fuel production means that, with the exception of flexible gas generation, most power sources can no longer be stored as hydrocarbons. Likewise, if low-carbon emission electrical supply replaces the oil and gas for domestic and industrial power needs, the structure of electricity demand will change dramatically.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9798223530657
  • Indbinding:
  • Paperback
  • Sideantal:
  • 174
  • Udgivet:
  • 6. januar 2024
  • Størrelse:
  • 216x10x280 mm.
  • Vægt:
  • 455 g.
  • 2-4 uger.
  • 19. december 2024
På lager

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Electrochemical Performance of SnO2 Based Nanocomposites for Supercapacitor Applications

The environmental pollution and energy crisis forecast a scarcity of fuel, rising global temperatures, and the defeat of biodiversity. The exhaustion of fossil fuel reserves and rapidly rising global warming has heightened public awareness of the necessity to stage out the fossil fuel industry. Consequently, the rapid increase in energy production from renewable sources has compelled the development of new generation energy storage systems because renewable sources cannot produce energy on demand. Renewable resources are virtually infinite in terms of duration, but they are limited in terms of energy available per unit of time, such as solar cells, wind turbines, solar thermal collectors, and geothermal power, they are promising sources of energy with a lesser carbon footprint. As a result, energy storage devices are critical for maximizing the use of renewable energy and to eliminate the carbon foot print from the environment. Moreover, the energy storage device is inevitable for the future of e-Vehicles, consumer electronics and the transmission and distribution of electricity.

Energy storage is essential to the energy security of today's energy networks. Most of the energies are stored in the form of raw or refined hydrocarbons, whether in the form of coal heaps or oil and gas reserves. These energy sources are creating more environmental and degradation due to their emissions of greenhouse gases and heat. The only exception is a pumped hydroelectric plant, which can provide a large amount of energy in a short period of time while also improving electric system reliability. The purpose and form of energy storage are likely to change significantly as energy systems evolve to use low-carbon technology. Perhaps two broad trends will drive this change. Initially, with the intermittent nuclear power and static production playing an important role in supplying electricity and it became difficult to match with demand, while imbalances will grow and dominate over the time. Moving away from fossil fuel production means that, with the exception of flexible gas generation, most power sources can no longer be stored as hydrocarbons. Likewise, if low-carbon emission electrical supply replaces the oil and gas for domestic and industrial power needs, the structure of electricity demand will change dramatically.

Brugerbedømmelser af Electrochemical Performance of SnO2 Based Nanocomposites for Supercapacitor Applications



Find lignende bøger
Bogen Electrochemical Performance of SnO2 Based Nanocomposites for Supercapacitor Applications findes i følgende kategorier: