De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Constrained IoT Edge Devices

Bag om Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Constrained IoT Edge Devices

This book describes an extensive and consistent soft error assessment of convolutional neural network (CNN) models from different domains through more than 14.8 million fault injections, considering different precision bit-width configurations, optimization parameters, and processor models. The authors also evaluate the relative performance, memory utilization, and soft error reliability trade-offs analysis of different CNN models considering a compiler-based technique w.r.t. traditional redundancy approaches.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783031185984
  • Indbinding:
  • Hardback
  • Sideantal:
  • 148
  • Udgivet:
  • 2. januar 2023
  • Udgave:
  • 23001
  • Størrelse:
  • 173x14x246 mm.
  • Vægt:
  • 467 g.
  • Ukendt - mangler pt..

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Constrained IoT Edge Devices

This book describes an extensive and consistent soft error assessment of convolutional neural network (CNN) models from different domains through more than 14.8 million fault injections, considering different precision bit-width configurations, optimization parameters, and processor models. The authors also evaluate the relative performance, memory utilization, and soft error reliability trade-offs analysis of different CNN models considering a compiler-based technique w.r.t. traditional redundancy approaches.

Brugerbedømmelser af Early Soft Error Reliability Assessment of Convolutional Neural Networks Executing on Resource-Constrained IoT Edge Devices