Dictionary Learning in Visual Computing
- Indbinding:
- Paperback
- Sideantal:
- 152
- Udgivet:
- 13. maj 2015
- Størrelse:
- 191x9x235 mm.
- Vægt:
- 298 g.
- 2-15 hverdage.
- 10. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Dictionary Learning in Visual Computing
The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster center, in a dictionary-based representation, a data point can be associated with a small set of dictionary atoms. Thus, dictionary learning provides a more flexible representation of data and may have the potential to capture more relevant features from the original feature space of the data. One of the early algorithms for dictionary learning is K-SVD. In recent years, many variations/extensionsof K-SVD and other new algorithms have been proposed, with some aiming at adding discriminative capability to the dictionary, and some attempting to model the relationship of multiple dictionaries. One prominent application of dictionary learning is in the general field of visual computing, where long-standing challenges have seen promising new solutions based on sparse representation with learned dictionaries. With a timely review of recent advances of dictionary learning in visual computing, covering the most recent literature with an emphasis on papers after 2008, this book provides a systematic presentation of the general methodologies, specific algorithms, and examples of applications for those who wish to have a quick start on this subject.
Brugerbedømmelser af Dictionary Learning in Visual Computing
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Dictionary Learning in Visual Computing findes i følgende kategorier:
- Business og læring > Computer og IT
- Teknologi, ingeniørvidenskab og landbrug > Teknologi: generelle emner > Ingeniørvidenskab: generelt
- Teknologi, ingeniørvidenskab og landbrug > Energiteknik > Elektroteknik
- Teknologi, ingeniørvidenskab og landbrug > Elektronik og kommunikationsteknik > Elektronik teknik
- Databehandling og informationsteknologi > Informatik > Signalbehandling
© 2024 Pling BØGER Registered company number: DK43351621