Device Physics for Engineering Design of Heavily Doped Regions in Pn-junction Silicon Solar Cells
- Indbinding:
- Paperback
- Sideantal:
- 206
- Udgivet:
- 31. maj 2019
- Størrelse:
- 280x216x11 mm.
- Vægt:
- 490 g.
- 8-11 hverdage.
- 13. december 2024
Forlænget returret til d. 31. januar 2025
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Device Physics for Engineering Design of Heavily Doped Regions in Pn-junction Silicon Solar Cells
Abstract:
This dissertation presents a quantitative study of the physical mechanisms underlying the anomolously large recombination current experimentally observed in heavily doped regions of silicon pn-junction solar cells and bipolar transistors. The study includes a comparison of theoretical predictions with a variety of experimental observations in heavily doped silicon and silicon devices.
A major conclusion is that the simplest physical model that adequately describes the heavily doped regions must include Fermi- Dirac statistics, a phenomenological excess intrinsic carrier density (or deficit impurity concentration), Auger recombination in the bulk, and recombination at the surface. These mechanisms are incorporated in a first-order model useful in the design of silicon pn-junction solar cells. The accuracy of the first-order model is supported by comparing its results with the results of more detailed models and of a numerical analysis of the problem. Experimental data are presented that are consistent with the predictions of the first-order model and of the numerical solution.
Dissertation Discovery Company and University of Florida are dedicated to making scholarly works more discoverable and accessible throughout the world. This dissertation, "Device Physics for Engineering Design of Heavily Doped Regions in Pn-junction Silicon Solar Cells" by Muhammed Ayman Shibib, was obtained from University of Florida and is being sold with permission from the author. A digital copy of this work may also be found in the university's institutional repository, IR@UF. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation.
This dissertation presents a quantitative study of the physical mechanisms underlying the anomolously large recombination current experimentally observed in heavily doped regions of silicon pn-junction solar cells and bipolar transistors. The study includes a comparison of theoretical predictions with a variety of experimental observations in heavily doped silicon and silicon devices.
A major conclusion is that the simplest physical model that adequately describes the heavily doped regions must include Fermi- Dirac statistics, a phenomenological excess intrinsic carrier density (or deficit impurity concentration), Auger recombination in the bulk, and recombination at the surface. These mechanisms are incorporated in a first-order model useful in the design of silicon pn-junction solar cells. The accuracy of the first-order model is supported by comparing its results with the results of more detailed models and of a numerical analysis of the problem. Experimental data are presented that are consistent with the predictions of the first-order model and of the numerical solution.
Dissertation Discovery Company and University of Florida are dedicated to making scholarly works more discoverable and accessible throughout the world. This dissertation, "Device Physics for Engineering Design of Heavily Doped Regions in Pn-junction Silicon Solar Cells" by Muhammed Ayman Shibib, was obtained from University of Florida and is being sold with permission from the author. A digital copy of this work may also be found in the university's institutional repository, IR@UF. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation.
Brugerbedømmelser af Device Physics for Engineering Design of Heavily Doped Regions in Pn-junction Silicon Solar Cells
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Device Physics for Engineering Design of Heavily Doped Regions in Pn-junction Silicon Solar Cells findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621