De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage
Bag om Deep Learning Models for Medical Imaging

Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow ''with'' and ''without'' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists. Provides a step-by-step approach to develop deep learning models Presents case studies showing end-to-end implementation (source codes: available upon request)

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9780128235041
  • Indbinding:
  • Paperback
  • Sideantal:
  • 170
  • Udgivet:
  • 8. september 2021
  • Størrelse:
  • 232x191x14 mm.
  • Vægt:
  • 384 g.
  • 2-3 uger.
  • 14. december 2024
På lager
Forlænget returret til d. 31. januar 2025

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Deep Learning Models for Medical Imaging

Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow ''with'' and ''without'' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.
Provides a step-by-step approach to develop deep learning models Presents case studies showing end-to-end implementation (source codes: available upon request)

Brugerbedømmelser af Deep Learning Models for Medical Imaging



Find lignende bøger
Bogen Deep Learning Models for Medical Imaging findes i følgende kategorier: