Deep Learning Models for Medical Imaging
- Indbinding:
- Paperback
- Sideantal:
- 170
- Udgivet:
- 8. september 2021
- Størrelse:
- 232x191x14 mm.
- Vægt:
- 384 g.
- 2-3 uger.
- 12. februar 2025
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Deep Learning Models for Medical Imaging
Deep Learning Models for Medical Imaging explains the concepts of Deep Learning (DL) and its importance in medical imaging and/or healthcare using two different case studies: a) cytology image analysis and b) coronavirus (COVID-19) prediction, screening, and decision-making, using publicly available datasets in their respective experiments. Of many DL models, custom Convolutional Neural Network (CNN), ResNet, InceptionNet and DenseNet are used. The results follow ''with'' and ''without'' transfer learning (including different optimization solutions), in addition to the use of data augmentation and ensemble networks. DL models for medical imaging are suitable for a wide range of readers starting from early career research scholars, professors/scientists to industrialists.
Provides a step-by-step approach to develop deep learning models Presents case studies showing end-to-end implementation (source codes: available upon request)
Provides a step-by-step approach to develop deep learning models Presents case studies showing end-to-end implementation (source codes: available upon request)
Brugerbedømmelser af Deep Learning Models for Medical Imaging
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Deep Learning Models for Medical Imaging findes i følgende kategorier:
© 2025 Pling BØGER Registered company number: DK43351621