Datenqualität im Kontext von Big Data. Ansätze zur Messung der Datenqualität sowie Auswirkungen auf Funktionalität und Nutzen
- Indbinding:
- Paperback
- Sideantal:
- 36
- Udgivet:
- 21. juli 2020
- Udgave:
- 20001
- Størrelse:
- 148x4x210 mm.
- Vægt:
- 68 g.
- 2-3 uger.
- 17. december 2024
På lager
Forlænget returret til d. 31. januar 2025
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Datenqualität im Kontext von Big Data. Ansätze zur Messung der Datenqualität sowie Auswirkungen auf Funktionalität und Nutzen
Studienarbeit aus dem Jahr 2019 im Fachbereich BWL - Informationswissenschaften, Informationsmanagement, Note: 1,3, Universität Ulm (Technologie- und Prozessmanagement), Veranstaltung: Customer Relationship Management und Social Media, Sprache: Deutsch, Abstract: Die Seminararbeit beantwortet die Fragen, welche Ansätze zur Messung der Datenqualität identifiziert werden können und welchen Einfluss die Datenqualität auf die Funktionalität und den Nutzen von Big Data hat. Darüber hinaus wird erörtert, welches Potenzial und welche Risiken sich aus der Verwendung und Auswertung von großen Datenmengen ergeben. In diesem Kontext wird insbesondere betrachtet, ob ein unzureichendes Datenqualitätsmanagement einen Einfluss auf die genannten Chancen und Herausforderungen hat.
Daten sind ein wichtiges Kapital für Unternehmen, da diese Grundlage für beinahe alle Geschäftsprozesse sind, sei es die Optimierung der Transportwege oder eine simple Preisauszeichnung eines Produkts. Im gegenwärtigen Informationszeitalter ist es besonders wichtig und entscheidend für den langfristigen Unternehmenserfolg, Daten zur Verfügung zu haben.
Es ist kein Problem in der globalisierten Welt von heute Unmengen an Daten zu sammeln und auszuwerten. Zusammengefasst unter dem Begriff Big Data versuchen Firmen über die Digital Analytics, dem Sammeln, Messen und Interpretieren von digitalen Daten, eine Differenzierung vom Wettbewerb zu erlangen. Doch ist vorrangig nicht die übermäßige Menge an Daten wichtig, sondern vor allem die Qualität und Verlässlichkeit.
Die Qualität der Daten kann maßgeblich sein für den Erfolg oder Misserfolg von Kampagnen, nicht zuletzt einer der Kernaspekte vieler Projekte beispielsweise von Marketingvorhaben. Einer Umfrage mit 421 Unternehmen unterschiedlichster Branchen zu Folge ist aber vor allem mangelnde Datenqualität und -validität einer der Schwachpunkte vieler Unternehmen. Ebenso steht eine hohe Datenqualität an der Spitze der Herausforderungen im Rahmen von Digital Analytics. Folglich besteht die Notwendigkeit, über entsprechende Ansätze die Datenqualität zu messen und zu prüfen, um den Datenbestand stets aktuell zu halten und damit im Konkurrenzwettbewerb stark zu bleiben.
Daten sind ein wichtiges Kapital für Unternehmen, da diese Grundlage für beinahe alle Geschäftsprozesse sind, sei es die Optimierung der Transportwege oder eine simple Preisauszeichnung eines Produkts. Im gegenwärtigen Informationszeitalter ist es besonders wichtig und entscheidend für den langfristigen Unternehmenserfolg, Daten zur Verfügung zu haben.
Es ist kein Problem in der globalisierten Welt von heute Unmengen an Daten zu sammeln und auszuwerten. Zusammengefasst unter dem Begriff Big Data versuchen Firmen über die Digital Analytics, dem Sammeln, Messen und Interpretieren von digitalen Daten, eine Differenzierung vom Wettbewerb zu erlangen. Doch ist vorrangig nicht die übermäßige Menge an Daten wichtig, sondern vor allem die Qualität und Verlässlichkeit.
Die Qualität der Daten kann maßgeblich sein für den Erfolg oder Misserfolg von Kampagnen, nicht zuletzt einer der Kernaspekte vieler Projekte beispielsweise von Marketingvorhaben. Einer Umfrage mit 421 Unternehmen unterschiedlichster Branchen zu Folge ist aber vor allem mangelnde Datenqualität und -validität einer der Schwachpunkte vieler Unternehmen. Ebenso steht eine hohe Datenqualität an der Spitze der Herausforderungen im Rahmen von Digital Analytics. Folglich besteht die Notwendigkeit, über entsprechende Ansätze die Datenqualität zu messen und zu prüfen, um den Datenbestand stets aktuell zu halten und damit im Konkurrenzwettbewerb stark zu bleiben.
Brugerbedømmelser af Datenqualität im Kontext von Big Data. Ansätze zur Messung der Datenqualität sowie Auswirkungen auf Funktionalität und Nutzen
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Datenqualität im Kontext von Big Data. Ansätze zur Messung der Datenqualität sowie Auswirkungen auf Funktionalität und Nutzen findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621