Data Cleaning for Effective Data Science
Du sparer
0%
ift. normalprisen
Spar
0%
- Indbinding:
- Paperback
- Udgivet:
- 9. januar 2000
- Kan forudbestilles.
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Data Cleaning for Effective Data Science
In Data Cleaning for Effective Data Science, leading data science trainer David Mertz provides the most systematic guide to cleaning data for any project, using any library or toolset. Mertz introduces many powerful techniques for analyzing, manipulating, and pre-processing data sources. He offers best practices for working with leading data formats such as JSON, CSV, SQL RDBMSes, HDF5, NoSQL databases, files in image formats, binary serialized data structures, and more. Mertz also focuses on crucial issues within the data itself, including missing data, outliers, biasing trends, class imbalance, value imputation, over/under-sampling, normalization and/or randomization, and anomalies.
This guide is organized around downloadable datasets, each illuminating specific issues with data integrity or quality. Each chapter explores the best ways to diagnose, analyze, and remediate these issues, offering hands-on practice using tools such as Python, Pandas, sklearn.preprocessing, scipy.stats, R, and Tidyverse. While the examples are demonstrated with widely-used tools, Mertz's concepts are applicable with any toolset. Each chapter also links to additional datasets with more problems, exercises, and solutions. Ancillary resources include Instructor Notes and PowerPoint lecture slides, which will both be downloadable from Pearson.com/us.
This guide is organized around downloadable datasets, each illuminating specific issues with data integrity or quality. Each chapter explores the best ways to diagnose, analyze, and remediate these issues, offering hands-on practice using tools such as Python, Pandas, sklearn.preprocessing, scipy.stats, R, and Tidyverse. While the examples are demonstrated with widely-used tools, Mertz's concepts are applicable with any toolset. Each chapter also links to additional datasets with more problems, exercises, and solutions. Ancillary resources include Instructor Notes and PowerPoint lecture slides, which will both be downloadable from Pearson.com/us.
Brugerbedømmelser af Data Cleaning for Effective Data Science
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Data Cleaning for Effective Data Science findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621