Crystalline Hafnia and Zirconia based Dielectrics for Memory Applications
Du sparer
0%
ift. normalprisen
Spar
0%
- Indbinding:
- Paperback
- Sideantal:
- 180
- Udgivet:
- 31. maj 2010
- Størrelse:
- 148x9x210 mm.
- Vægt:
- 241 g.
- 2-3 uger.
- 10. december 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Crystalline Hafnia and Zirconia based Dielectrics for Memory Applications
This work investigates the crystallography and dielectric properties of Zirconium- and Hafnium-oxide based nano-scale thin film insulators for memory.
Hafnium- and Zirconium-oxide are industry leading candidates for high-k dielectrics. Most application research has focused on the application of amorphous high-k due to formation of defects associated with the crystalline phase. However the application of crystalline dielectrics offers two advantages: Potentially high thermal stability, since no measures have to be taken to avoid crystallization, and the ability to manipulate crystalline phase composition to maximize dielectric constants.
Pure ZrO2 crystallized at a lower temperature than HfO2 and always formed a metastable t¿ higher-k phase. ZrO2 crystallized already during deposition, leading to leakage current degradation. It was shown that this problem could be solved by SiO2 addition to raise the crystallization temperature, allowing fabrication of low leakage, low effective oxide thickness (EOT) metal-insulator-metal (MIM) capacitors suitable for stack based DRAM down to the 4X nm node.
Hafnium- and Zirconium-oxide are industry leading candidates for high-k dielectrics. Most application research has focused on the application of amorphous high-k due to formation of defects associated with the crystalline phase. However the application of crystalline dielectrics offers two advantages: Potentially high thermal stability, since no measures have to be taken to avoid crystallization, and the ability to manipulate crystalline phase composition to maximize dielectric constants.
Pure ZrO2 crystallized at a lower temperature than HfO2 and always formed a metastable t¿ higher-k phase. ZrO2 crystallized already during deposition, leading to leakage current degradation. It was shown that this problem could be solved by SiO2 addition to raise the crystallization temperature, allowing fabrication of low leakage, low effective oxide thickness (EOT) metal-insulator-metal (MIM) capacitors suitable for stack based DRAM down to the 4X nm node.
Brugerbedømmelser af Crystalline Hafnia and Zirconia based Dielectrics for Memory Applications
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Crystalline Hafnia and Zirconia based Dielectrics for Memory Applications findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621