Continuous Parameter Markov Processes and Stochastic Differential Equations
- Indbinding:
- Hardback
- Sideantal:
- 490
- Udgivet:
- 17. november 2023
- Størrelse:
- 158x238x30 mm.
- Vægt:
- 1021 g.
- Ukendt - mangler pt..
Forlænget returret til d. 31. januar 2025
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Continuous Parameter Markov Processes and Stochastic Differential Equations
This graduate text presents the elegant and profound theory of continuous parameter Markov processes and many of its applications. The authors focus on developing context and intuition before formalizing the theory of each topic, illustrated with examples.
After a review of some background material, the reader is introduced to semigroup theory, including the Hille-Yosida Theorem, used to construct continuous parameter Markov processes. Illustrated with examples, it is a cornerstone of Feller's seminal theory of the most general one-dimensional diffusions studied in a later chapter. This is followed by two chapters with probabilistic constructions of jump Markov processes, and processes with independent increments, or Lévy processes. The greater part of the book is devoted to Itô's fascinating theory of stochastic differential equations, and to the study of asymptotic properties of diffusions in all dimensions, such as explosion, transience, recurrence, existence of steady states, and the speed of convergence to equilibrium. A broadly applicable functional central limit theorem for ergodic Markov processes is presented with important examples. Intimate connections between diffusions and linear second order elliptic and parabolic partial differential equations are laid out in two chapters, and are used for computational purposes. Among Special Topics chapters, two study anomalous diffusions: one on skew Brownian motion, and the other on an intriguing multi-phase homogenization of solute transport in porous media.
After a review of some background material, the reader is introduced to semigroup theory, including the Hille-Yosida Theorem, used to construct continuous parameter Markov processes. Illustrated with examples, it is a cornerstone of Feller's seminal theory of the most general one-dimensional diffusions studied in a later chapter. This is followed by two chapters with probabilistic constructions of jump Markov processes, and processes with independent increments, or Lévy processes. The greater part of the book is devoted to Itô's fascinating theory of stochastic differential equations, and to the study of asymptotic properties of diffusions in all dimensions, such as explosion, transience, recurrence, existence of steady states, and the speed of convergence to equilibrium. A broadly applicable functional central limit theorem for ergodic Markov processes is presented with important examples. Intimate connections between diffusions and linear second order elliptic and parabolic partial differential equations are laid out in two chapters, and are used for computational purposes. Among Special Topics chapters, two study anomalous diffusions: one on skew Brownian motion, and the other on an intriguing multi-phase homogenization of solute transport in porous media.
Brugerbedømmelser af Continuous Parameter Markov Processes and Stochastic Differential Equations
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
© 2024 Pling BØGER Registered company number: DK43351621