Clinical Prediction Models
- A Practical Approach to Development, Validation, and Updating
- Indbinding:
- Paperback
- Sideantal:
- 558
- Udgivet:
- 14. august 2020
- Udgave:
- 22019
- Størrelse:
- 234x156x38 mm.
- Vægt:
- 894 g.
- 8-11 hverdage.
- 11. december 2024
Forlænget returret til d. 31. januar 2025
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Clinical Prediction Models
PrefaceviiAcknowledgementsxi
Chapter 1Introduction1
1.1Diagnosis, prognosis and therapy choice in medicine1
1.1.1Predictions for personalized evidence-based medicine1
1.2Statistical modeling for prediction5
1.2.1Model assumptions5
1.2.2Reliability of predictions: aleatory and epistemic uncertainty6
1.2.3Sample size6
1.3Structure of the book81.3.1Part I: Prediction models in medicine8
1.3.2Part II: Developing internally valid prediction models8
1.3.3Part III: Generalizability of prediction models9
1.3.4Part IV: Applications9
Part I: Prediction models in medicine11
Chapter 2Applications of prediction models13
2.1Applications: medical practice and research13
2.2Prediction models for Public Health14
2.2.1Targeting of preventive interventions14*2.2.2Example: prediction for breast cancer14
2.3Prediction models for clinical practice17
2.3.1Decision support on test ordering17
*2.3.2Example: predicting renal artery stenosis17
2.3.3Starting treatment: the treatment threshold20
*2.3.4Example: probability of deep venous thrombosis20
2.3.5Intensity of treatment21
*2.3.6Example: defining a poor prognosis subgroup in cancer22
2.3.7Cost-effectiveness of treatment23
2.3.8Delaying treatment23
*2.3.9Example: spontaneous pregnancy chances24
2.3.10Surgical decision-making26
*2.3.11Example: replacement of risky heart valves27
2.4Prediction models for medical research28
2.4.1Inclusion and stratification in a RCT28
*2.4.2Example: selection for TBI trials29
2.4.3Covariate adjustment in a RCT30
2.4.4Gain in power by covariate adjustment31
*2.4.5Example: analysis of the GUSTO-III trial32
2.4.6Prediction models and observational studies32
2.4.7Propensity scores33
*2.4.8Example: statin treatment effects342.4.9Provider comparisons35
*2.4.10Example: ranking cardiac outcome35
2.5Concluding remarks35
Chapter 3Study design for prediction modeling37
3.1Studies for prognosis37
3.1.1Retrospective designs37
*3.1.2Example: predicting early mortality in esophageal cancer37
3.1.3Prospective designs38
*3.1.4Example: predicting long-term mortality in esophageal cancer393.1.5Registry data39
*3.1.6Example: surgical mortality in esophageal cancer39
3.1.7Nested case-control studies40
*3.1.8Example: perioperative mortality in major vascular surgery40
3.2Studies for diagnosis41
3.2.1Cross-sectional study design and multivariable modeling41
*3.2.2Example: diagnosing renal artery stenosis41
3.2.3Case-control studies41
*3.2.4Example: diagnosing acute appendicitis42
3.3Predictors and outcome42
3.3.1Strength of predictors42
3.3.2Categories of predictors42
3.3.3Costs of predictors43
3.3.4Determinants of prognosis44
3.3.5Prognosis in oncology44
3.4Reliability of predictors45
3.4.1Observer variability45
*3.4.2Example: histology in Barrett''s esophagus45
3.4.3Biological variability46
3.4.4Regression dilution bias46
*3.4.5Example: simulation study on reliability of a binary predictor46
3.4.6Choice of predictors47
3.5Outcome47
3.5.1Types of outcome47
3.5.2Survival endpoints48
*3.5.3Examples: 5-year relative survival in cancer registries48
3.5.4Composite endpoints49
*3.5.5Example: composite endpoints in cardiology49
Chapter 1Introduction1
1.1Diagnosis, prognosis and therapy choice in medicine1
1.1.1Predictions for personalized evidence-based medicine1
1.2Statistical modeling for prediction5
1.2.1Model assumptions5
1.2.2Reliability of predictions: aleatory and epistemic uncertainty6
1.2.3Sample size6
1.3Structure of the book81.3.1Part I: Prediction models in medicine8
1.3.2Part II: Developing internally valid prediction models8
1.3.3Part III: Generalizability of prediction models9
1.3.4Part IV: Applications9
Part I: Prediction models in medicine11
Chapter 2Applications of prediction models13
2.1Applications: medical practice and research13
2.2Prediction models for Public Health14
2.2.1Targeting of preventive interventions14*2.2.2Example: prediction for breast cancer14
2.3Prediction models for clinical practice17
2.3.1Decision support on test ordering17
*2.3.2Example: predicting renal artery stenosis17
2.3.3Starting treatment: the treatment threshold20
*2.3.4Example: probability of deep venous thrombosis20
2.3.5Intensity of treatment21
*2.3.6Example: defining a poor prognosis subgroup in cancer22
2.3.7Cost-effectiveness of treatment23
2.3.8Delaying treatment23
*2.3.9Example: spontaneous pregnancy chances24
2.3.10Surgical decision-making26
*2.3.11Example: replacement of risky heart valves27
2.4Prediction models for medical research28
2.4.1Inclusion and stratification in a RCT28
*2.4.2Example: selection for TBI trials29
2.4.3Covariate adjustment in a RCT30
2.4.4Gain in power by covariate adjustment31
*2.4.5Example: analysis of the GUSTO-III trial32
2.4.6Prediction models and observational studies32
2.4.7Propensity scores33
*2.4.8Example: statin treatment effects342.4.9Provider comparisons35
*2.4.10Example: ranking cardiac outcome35
2.5Concluding remarks35
Chapter 3Study design for prediction modeling37
3.1Studies for prognosis37
3.1.1Retrospective designs37
*3.1.2Example: predicting early mortality in esophageal cancer37
3.1.3Prospective designs38
*3.1.4Example: predicting long-term mortality in esophageal cancer393.1.5Registry data39
*3.1.6Example: surgical mortality in esophageal cancer39
3.1.7Nested case-control studies40
*3.1.8Example: perioperative mortality in major vascular surgery40
3.2Studies for diagnosis41
3.2.1Cross-sectional study design and multivariable modeling41
*3.2.2Example: diagnosing renal artery stenosis41
3.2.3Case-control studies41
*3.2.4Example: diagnosing acute appendicitis42
3.3Predictors and outcome42
3.3.1Strength of predictors42
3.3.2Categories of predictors42
3.3.3Costs of predictors43
3.3.4Determinants of prognosis44
3.3.5Prognosis in oncology44
3.4Reliability of predictors45
3.4.1Observer variability45
*3.4.2Example: histology in Barrett''s esophagus45
3.4.3Biological variability46
3.4.4Regression dilution bias46
*3.4.5Example: simulation study on reliability of a binary predictor46
3.4.6Choice of predictors47
3.5Outcome47
3.5.1Types of outcome47
3.5.2Survival endpoints48
*3.5.3Examples: 5-year relative survival in cancer registries48
3.5.4Composite endpoints49
*3.5.5Example: composite endpoints in cardiology49
Brugerbedømmelser af Clinical Prediction Models
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Clinical Prediction Models findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621