Cauchy Problem for Differential Operators with Double Characteristics
- Non-Effectively Hyperbolic Characteristics
indgår i Lecture Notes in Mathematics serien
- Indbinding:
- Paperback
- Sideantal:
- 213
- Udgivet:
- 26. november 2017
- Udgave:
- 12017
- Størrelse:
- 154x233x19 mm.
- Vægt:
- 352 g.
- 8-11 hverdage.
- 29. januar 2025
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Cauchy Problem for Differential Operators with Double Characteristics
Combining geometrical and microlocal tools, this monograph gives detailed proofs of many well/ill-posed results related to the Cauchy problem for di¿erential operators with non-e¿ectively hyperbolic double characteristics. Previously scattered over numerous di¿erent publications, the results are presented from the viewpoint that the Hamilton map and the geometry of bicharacteristics completely characterizes the well/ill-posedness of the Cauchy problem.
A doubly characteristic point of a di¿erential operator P of order m (i.e. one where Pm = dPm = 0) is e¿ectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is e¿ectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.
If there is a non-e¿ectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between ¿Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insücient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
A doubly characteristic point of a di¿erential operator P of order m (i.e. one where Pm = dPm = 0) is e¿ectively hyperbolic if the Hamilton map FPm has real non-zero eigen values. When the characteristics are at most double and every double characteristic is e¿ectively hyperbolic, the Cauchy problem for P can be solved for arbitrary lower order terms.
If there is a non-e¿ectively hyperbolic characteristic, solvability requires the subprincipal symbol of P to lie between ¿Pµj and Pµj, where iµj are the positive imaginary eigenvalues of FPm . Moreover, if 0 is an eigenvalue of FPm with corresponding 4 × 4 Jordan block, the spectral structure of FPm is insücient to determine whether the Cauchy problem is well-posed and the behavior of bicharacteristics near the doubly characteristic manifold plays a crucial role.
Brugerbedømmelser af Cauchy Problem for Differential Operators with Double Characteristics
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Cauchy Problem for Differential Operators with Double Characteristics findes i følgende kategorier:
© 2025 Pling BØGER Registered company number: DK43351621