C8-Algebraic Geometry with Corners
- Indbinding:
- Paperback
- Sideantal:
- 220
- Udgivet:
- 29. februar 2024
- Størrelse:
- 152x13x229 mm.
- Vægt:
- 320 g.
- 8-11 hverdage.
- 20. november 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af C8-Algebraic Geometry with Corners
Schemes in algebraic geometry can have singular points, whereas differential geometers typically focus on manifolds which are nonsingular. However, there is a class of schemes, 'C¿-schemes', which allow differential geometers to study a huge range of singular spaces, including 'infinitesimals' and infinite-dimensional spaces. These are applied in synthetic differential geometry, and derived differential geometry, the study of 'derived manifolds'. Differential geometers also study manifolds with corners. The cube is a 3-dimensional manifold with corners, with boundary the six square faces. This book introduces 'C¿-schemes with corners', singular spaces in differential geometry with good notions of boundary and corners. They can be used to define 'derived manifolds with corners' and 'derived orbifolds with corners'. These have applications to major areas of symplectic geometry involving moduli spaces of J-holomorphic curves. This work will be a welcome source of information and inspiration for graduate students and researchers working in differential or algebraic geometry.
Brugerbedømmelser af C8-Algebraic Geometry with Corners
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen C8-Algebraic Geometry with Corners findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621