De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Bootstrapping

- A Nonparametric Approach to Statistical Inference

Bag om Bootstrapping

Bootstrapping, a computational nonparametric technique for `re-sampling'', enables researchers to draw a conclusion about the characteristics of a population strictly from the existing sample rather than by making parametric assumptions about the estimator. Using real data examples from per capita personal income to median preference differences between legislative committee members and the entire legislature, Mooney and Duval discuss how to apply bootstrapping when the underlying sampling distribution of the statistics cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, they show the advantages and limitations of four bootstrap confidence interval methods: normal approximation, percentile, bias-corrected percentile, and percentile-t. The authors conclude with a convenient summary of how to apply this computer-intensive methodology using various available software packages.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9780803953819
  • Indbinding:
  • Paperback
  • Sideantal:
  • 80
  • Udgivet:
  • 29. september 1993
  • Størrelse:
  • 137x216x4 mm.
  • Vægt:
  • 100 g.
  • 8-11 hverdage.
  • 20. november 2024

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Bootstrapping

Bootstrapping, a computational nonparametric technique for `re-sampling'', enables researchers to draw a conclusion about the characteristics of a population strictly from the existing sample rather than by making parametric assumptions about the estimator. Using real data examples from per capita personal income to median preference differences between legislative committee members and the entire legislature, Mooney and Duval discuss how to apply bootstrapping when the underlying sampling distribution of the statistics cannot be assumed normal, as well as when the sampling distribution has no analytic solution. In addition, they show the advantages and limitations of four bootstrap confidence interval methods: normal approximation, percentile, bias-corrected percentile, and percentile-t. The authors conclude with a convenient summary of how to apply this computer-intensive methodology using various available software packages.

Brugerbedømmelser af Bootstrapping



Find lignende bøger
Bogen Bootstrapping findes i følgende kategorier: