Bayesian Machine Learning in Geotechnical Site Characterization
- Indbinding:
- Hardback
- Udgivet:
- 7. august 2024
- Størrelse:
- 156x234x13 mm.
- Vægt:
- 445 g.
- 2-3 uger.
- 20. december 2024
På lager
Forlænget returret til d. 31. januar 2025
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Bayesian Machine Learning in Geotechnical Site Characterization
Bayesian data analysis and modelling linked with machine learning offers a new tool for handling geotechnical data. This book presents recent advancements made by the author in the area of probabilistic geotechnical site characterization.
Two types of correlation play central roles in geotechnical site characterization: cross-correlation among soil properties and spatial-correlation in the underground space. The book starts with the introduction of Bayesian notion of probability "degree of belief", showing that well known probability axioms can be obtained by Boolean logic and the definition of plausibility function without the use of the notion "relative frequency". It then reviews probability theories and useful probability models for cross correlation and spatial correlation. Methods for Bayesian parameter estimation and prediction are also presented, and the use of these methods demonstrated with geotechnical site characterization examples.
Bayesian Machine Learning in Geotechnical Site Characterization suits consulting engineers and graduate students in the area.
Two types of correlation play central roles in geotechnical site characterization: cross-correlation among soil properties and spatial-correlation in the underground space. The book starts with the introduction of Bayesian notion of probability "degree of belief", showing that well known probability axioms can be obtained by Boolean logic and the definition of plausibility function without the use of the notion "relative frequency". It then reviews probability theories and useful probability models for cross correlation and spatial correlation. Methods for Bayesian parameter estimation and prediction are also presented, and the use of these methods demonstrated with geotechnical site characterization examples.
Bayesian Machine Learning in Geotechnical Site Characterization suits consulting engineers and graduate students in the area.
Brugerbedømmelser af Bayesian Machine Learning in Geotechnical Site Characterization
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Bayesian Machine Learning in Geotechnical Site Characterization findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621