Advances in Probabilistic Graphical Models
- Indbinding:
- Paperback
- Sideantal:
- 408
- Udgivet:
- 19. november 2010
- Størrelse:
- 155x23x235 mm.
- Vægt:
- 616 g.
- 2-3 uger.
- 26. november 2024
På lager
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af Advances in Probabilistic Graphical Models
In recent years considerable progress has been made in the area of probabilistic graphical models, in particular Bayesian networks and influence diagrams. Probabilistic graphical models have become mainstream in the area of uncertainty in artificial intelligence;
contributions to the area are coming from computer science, mathematics, statistics and engineering.
This carefully edited book brings together in one volume some of the most important topics of current research in probabilistic graphical modelling, learning from data and probabilistic inference. This includes topics such as the characterisation of conditional
independence, the sensitivity of the underlying probability distribution of a Bayesian network to variation in its parameters, the learning of graphical models with latent variables and extensions to the influence diagram formalism. In addition, attention is given to important application fields of probabilistic graphical models, such as the control of vehicles, bioinformatics and medicine.
contributions to the area are coming from computer science, mathematics, statistics and engineering.
This carefully edited book brings together in one volume some of the most important topics of current research in probabilistic graphical modelling, learning from data and probabilistic inference. This includes topics such as the characterisation of conditional
independence, the sensitivity of the underlying probability distribution of a Bayesian network to variation in its parameters, the learning of graphical models with latent variables and extensions to the influence diagram formalism. In addition, attention is given to important application fields of probabilistic graphical models, such as the control of vehicles, bioinformatics and medicine.
Brugerbedømmelser af Advances in Probabilistic Graphical Models
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen Advances in Probabilistic Graphical Models findes i følgende kategorier:
- Business og læring > Computer og IT
- Matematik og naturvidenskab > Matematik > Diskret matematik
- Matematik og naturvidenskab > Matematik > Sandsynlighedsregning og statistik
- Matematik og naturvidenskab > Matematik > Anvendt matematik > Matematisk modellering
- Matematik og naturvidenskab > Matematik > Anvendt matematik > Stokastik
- Teknologi, ingeniørvidenskab og landbrug > Teknologi: generelle emner > Matematik for ingeniører
- Databehandling og informationsteknologi > Informatik > Kunstig intelligens
© 2024 Pling BØGER Registered company number: DK43351621