De Aller-Bedste Bøger - over 12 mio. danske og engelske bøger
Levering: 1 - 2 hverdage

Advances in Knowledge Discovery and Data Mining

Bag om Advances in Knowledge Discovery and Data Mining

The 4-volume set LNAI 13935 - 13938 constitutes the proceedings of the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, which took place in Osaka, Japan during May 25¿28, 2023. The 143 papers presented in these proceedings were carefully reviewed and selected from 813 submissions. They deal with new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, big data technologies, and foundations.

Vis mere
  • Sprog:
  • Engelsk
  • ISBN:
  • 9783031333828
  • Indbinding:
  • Paperback
  • Sideantal:
  • 372
  • Udgivet:
  • 31. maj 2023
  • Udgave:
  • 23001
  • Størrelse:
  • 155x21x235 mm.
  • Vægt:
  • 563 g.
  • 8-11 hverdage.
  • 11. december 2024
På lager
Forlænget returret til d. 31. januar 2025

Normalpris

Abonnementspris

- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding

Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.

Beskrivelse af Advances in Knowledge Discovery and Data Mining

The 4-volume set LNAI 13935 - 13938 constitutes the proceedings of the 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2023, which took place in Osaka, Japan during May 25¿28, 2023.
The 143 papers presented in these proceedings were carefully reviewed and selected from 813 submissions. They deal with new ideas, original research results, and practical development experiences from all KDD related areas, including data mining, data warehousing, machine learning, artificial intelligence, databases, statistics, knowledge engineering, big data technologies, and foundations.

Brugerbedømmelser af Advances in Knowledge Discovery and Data Mining