The rotational spectrum of oxatrisulfane and dimethyl ether 13C-isotopologues
Du sparer
0%
ift. normalprisen
Spar
0%
- Indbinding:
- Paperback
- Sideantal:
- 170
- Udgivet:
- 24. juni 2013
- Størrelse:
- 148x9x210 mm.
- Vægt:
- 229 g.
- 2-3 uger.
- 14. december 2024
På lager
Forlænget returret til d. 31. januar 2025
Normalpris
Abonnementspris
- Rabat på køb af fysiske bøger
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
- 1 valgfrit digitalt ugeblad
- 20 timers lytning og læsning
- Adgang til 70.000+ titler
- Ingen binding
Abonnementet koster 75 kr./md.
Ingen binding og kan opsiges når som helst.
Beskrivelse af The rotational spectrum of oxatrisulfane and dimethyl ether 13C-isotopologues
In the course of this thesis, two different molecular species have been studied. Both are connected to different aspects of rotational spectroscopy regarding the challenges in the investigation as well as the scientific questions.
Oxatrisulfane (HSSOH) is a molecule of chemical interest with the focus on obtaining the geometric structure and the stability of possible configurations of oxasulfanes. Since it is a very reactive molecular species, which is not stable even under laboratory conditions, the production of oxatrisulfane is the bottleneck to a spectroscopic investigation.
The 13C-isotopologues of dimethyl ether (13CH3O12CH3 and (13CH3)2O) are stable molecules, but the analysis of their rotational spectrum is challenging due to large amplitude motions of the two methyl groups. The development of spectroscopic models for molecules undergoing internal rotation is still ongoing, involving combined theoretical and experimental efforts. In addition, isotopologues of dimethyl ether are of strong astronomical interest. Precise prediction of their rotational spectrum is essential to overcome the line confusion in astronomical observations of star-forming regions and to enable the detection of more exotic species. Furthermore, the relative isotopic abundance ratios of molecular species in the interstellar medium can contain information on their formation processes. These ratios are important pieces in the big puzzle of astrochemical networks which aim towards the understanding of the evolution of star-forming regions.
Oxatrisulfane (HSSOH) is a molecule of chemical interest with the focus on obtaining the geometric structure and the stability of possible configurations of oxasulfanes. Since it is a very reactive molecular species, which is not stable even under laboratory conditions, the production of oxatrisulfane is the bottleneck to a spectroscopic investigation.
The 13C-isotopologues of dimethyl ether (13CH3O12CH3 and (13CH3)2O) are stable molecules, but the analysis of their rotational spectrum is challenging due to large amplitude motions of the two methyl groups. The development of spectroscopic models for molecules undergoing internal rotation is still ongoing, involving combined theoretical and experimental efforts. In addition, isotopologues of dimethyl ether are of strong astronomical interest. Precise prediction of their rotational spectrum is essential to overcome the line confusion in astronomical observations of star-forming regions and to enable the detection of more exotic species. Furthermore, the relative isotopic abundance ratios of molecular species in the interstellar medium can contain information on their formation processes. These ratios are important pieces in the big puzzle of astrochemical networks which aim towards the understanding of the evolution of star-forming regions.
Brugerbedømmelser af The rotational spectrum of oxatrisulfane and dimethyl ether 13C-isotopologues
Giv din bedømmelse
For at bedømme denne bog, skal du være logget ind.Andre købte også..
Find lignende bøger
Bogen The rotational spectrum of oxatrisulfane and dimethyl ether 13C-isotopologues findes i følgende kategorier:
© 2024 Pling BØGER Registered company number: DK43351621